[发明专利]岩体幂函数型细观时效破裂三维模型的构建方法有效
申请号: | 201611160374.5 | 申请日: | 2016-12-15 |
公开(公告)号: | CN106813973B | 公开(公告)日: | 2018-08-07 |
发明(设计)人: | 黄书岭;丁秀丽;李欢;邬爱清;徐平;张练;高源;朱良韬 | 申请(专利权)人: | 长江水利委员会长江科学院 |
主分类号: | G01N3/00 | 分类号: | G01N3/00 |
代理公司: | 武汉开元知识产权代理有限公司 42104 | 代理人: | 潘杰;李满 |
地址: | 430010*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种岩体幂函数型细观时效破裂三维模型的构建方法,包括考虑弯扭贡献因子的岩体细观颗粒粘结应力三维模式、考虑弯扭贡献因子的细观颗粒粘结时效劣化衰减的三维幂函数型模式、考虑弯扭贡献效应且带拉伸截止限的摩尔库伦细观颗粒粘结时效破裂准则、以及考虑阻尼效应的细观颗粒线性接触三维模型的构建过程。本发明适应于三维应力空间条件下应力和裂纹扩展速度之间的关系符合幂函数型的这类岩体,对于这类深部岩体工程在三维应力条件下的围岩长期稳定性预测、评价以及优化设计提供技术支持。 | ||
搜索关键词: | 岩体幂 函数 型细观 时效 破裂 三维 模型 构建 方法 | ||
【主权项】:
1.一种岩体幂函数型细观时效破裂三维模型的构建方法,包括如下步骤:步骤1:设定岩体细观颗粒粘结接触的三维几何参数量包括三维粘结面积、三维粘结惯性矩和三维粘结极惯性矩;其中,R(a),R(b)分别为三维粘结接触两端的颗粒半径,粘结单位厚度为1时的三维粘结面积、粘结单位厚度为1时的三维粘结惯性矩和粘结单位厚度为1时的三维粘结极惯性矩分别通过公式(2)、公式(3)、公式(4)来确定:其中:为岩体细观颗粒三维粘结半径,为三维粘结直径乘数或半径乘数,A为三维粘结面积,I为三维粘结惯性矩,J为三维粘结极惯性矩;步骤2:利用岩体细观颗粒三维粘结时效衰减劣化的初始时间步长增量Δt,通过三维幂函数形式计算岩体细观颗粒粘结直径,公式(5)来确定;其中:为判断三维岩体细观颗粒开始时效劣化衰减时的应力阀值,为岩体细观颗粒三维粘结拉伸强度,为考虑扭矩贡献因子的岩体细观颗粒三维粘结应力比,为岩体细观颗粒三维粘结应力,β1为控制幂函数整体变化的岩体内部细观颗粒三维粘结时效劣化系数,β2为控制幂函数上标部分变化的岩体内部细观颗粒三维粘结时效劣化系数,为岩体细观颗粒三维粘结随时间劣化衰减的直径,为岩体细观颗粒三维粘结未衰减时的直径;步骤3:根据步骤2中的公式(5),设定岩体细观颗粒三维粘结直径的幂函数型时效衰减因子,见公式(6):其中:β为岩体细观颗粒三维粘结直径的时效衰减因子,A'、I'、J'、分别为岩体内部细观颗粒三维粘结随时间劣化衰减的粘结直径、粘结半径、粘结面积、粘结惯性矩、粘结极惯性矩、粘结直径乘数(粘结直径乘数指粘结直径(或粘结半径)与粘结两端最小颗粒直径(或半径)的比值),Δt为岩体时效衰减劣化的时间增量,A、I、J、分别为岩体内部细观颗粒三维粘结未衰减时的粘结直径、粘结半径、粘结面积、粘结惯性矩、粘结极惯性矩、粘结直径乘数;步骤4:将上述步骤1的公式(1)和步骤3中的公式(6),代入步骤1中的公式(2)、公式(3)和公式(4)中得到岩体细观颗粒三维粘结几何参数时效劣化衰减模式,该岩体细观颗粒三维粘结几何参数时效劣化衰减模式,即是在三维情况下,岩体细观颗粒粘结直径随着时间增加而不断劣化衰减,三维粘结的面积、惯性矩和极惯性矩也随着时间增加而不断劣化衰减,分别见公式(7)、公式(8)和公式(9);其中:A、I、J分别为岩体细观颗粒三维粘结未衰减时的粘结面积、粘结惯性矩、粘结极惯性矩,A'、I'、J'分别表示为岩体细观颗粒三维粘结随时间劣化衰减的粘结半径、粘结面积、粘结惯性矩、粘结极惯性矩,β为岩体细观颗粒三维粘结直径的时效衰减因子;步骤5:依次计算待构建三维模型中的第j个至第k个岩体细观颗粒粘结包含时间效应的三维粘结法向弯矩增量、切向扭矩增量,具体计算方法为,由三维岩体细观颗粒粘结两端颗粒的速度、角速度和给定的循环计算步Δtc,通过如下公式(10)、公式(11)、公式(12)、公式(13),确定三维岩体细观颗粒粘结法向增量位移三维岩体细观颗粒粘结切向st方向的增量位移三维岩体细观颗粒粘结切向ss方向的增量位移确定三维岩体细观颗粒粘结法向相对转角三维岩体细观颗粒粘结切向ss方向的相对转角三维岩体细观颗粒粘结切向st方向的相对转角再结合步骤4中的公式(8)和公式(9)以及步骤3中的公式(6),确定三维岩体细观颗粒粘结切向st方向的扭矩增量、切向ss方向的扭矩增量以及三维岩体细观颗粒粘结法向弯矩增量,见如下公式(14)、公式(15)以及公式(16);其中:ff、j、k是自然数,且2≤j≤ff≤k,j为每次循环计算中,包含时间效应的岩体细观颗粒粘结衰减后未破裂的初始标号值,ff为中间某一个标号值,k为每次循环计算中,包含时间效应的岩体细观颗粒粘结衰减后未破裂的最末标号值,分别为第i个三维岩体细观颗粒粘结接触的a端和b端的绝对运动速度,分别为第i个三维岩体细观颗粒粘结接触的a端和b端的角速度,nn、nss、nst分别为三维岩体细观颗粒粘结接触的法向单位向量、切向ss方向的单位向量、切向st方向的单位向量,ss和st为同一平面上相互垂直的两个方向的代号,分别为三维岩体细观颗粒粘结法向的位移增量、切向ss方向的位移增量、切向st方向的位移增量,I、J分别为岩体细观颗粒三维粘结未衰减时的惯性矩、极惯性矩,为三维岩体细观颗粒粘结法向刚度,为三维岩体细观颗粒粘切向刚度,分别为三维岩体细观颗粒粘切向ss方向的扭矩增量值、切向st方向的扭矩增量值,为三维岩体细观颗粒粘法向弯矩增量值,三维岩体细观颗粒粘的弯矩和扭矩按右手螺旋法则,确定其矢量方向;步骤6:根据步骤203中的公式(7)~公式(9)、步骤204中的公式(10)~公式(13)以及步骤202中的公式(6),并通过公式(17)、公式(20)、公式(23)、公式(24)计算第i个岩体细观颗粒三维粘结接触的粘结法向力、切向力、法向弯矩、切向扭矩第i个岩体细观颗粒三维粘结接触的粘结法向力:第i个岩体细观颗粒三维粘结接触的粘结切向ss方向力:第i个岩体细观颗粒三维粘结接触的粘结切向st方向力:第i个岩体细观颗粒三维粘结接触的粘结切向合力:第i个岩体细观颗粒三维粘结接触的粘结切向ss方向扭矩:第i个岩体细观颗粒三维粘结接触的粘结切向st方向扭矩:第i个岩体细观颗粒三维粘结接触的粘结法向弯矩:第i个岩体细观颗粒三维粘结接触的粘结切向合扭矩:其中:为第i个岩体细观颗粒三维粘结接触的粘结法向力、为第i个岩体细观颗粒三维粘结接触的粘结切向ss方向力、为第i个岩体细观颗粒三维粘结接触的粘结切向st方向力、为第i个岩体细观颗粒三维粘结接触的粘结切向合力,为第i个岩体细观颗粒三维粘结接触的粘结切向ss方向扭矩,为第i个岩体细观颗粒三维粘结接触的粘结切向st方向扭矩,为第i个岩体细观颗粒三维粘结接触的粘结法向弯矩,为第i个岩体细观颗粒三维粘结接触的粘结切向合扭矩,为第i个岩体细观颗粒三维粘结接触的粘结法向位移增量,为第i个岩体细观颗粒三维粘结接触的粘结切向ss方向位移增量,为第i个岩体细观颗粒三维粘结接触的粘结切向st方向位移增量,为三维岩体细观颗粒粘结法向刚度,为三维岩体细观颗粒粘切向刚度,A、I、J分别为岩体细观颗粒三维粘结未衰减时的粘结面积、粘结惯性矩、粘结极惯性矩,β为岩体细观颗粒三维粘结直径的时效衰减因子,ff为包含时间效应的岩体细观颗粒粘结衰减后未破裂的初始标号,+=为加法自反运算符,‑=为减法自反运算符;步骤7:考虑三维岩体细观颗粒粘结法向扭矩对岩体细观颗粒三维粘结正应力的贡献程度,在三维粘结正应力计算公式中设置扭矩贡献因子考虑三维岩体细观颗粒粘结切向弯矩对岩体细观颗粒三维粘结剪应力的贡献程度,在三维粘结剪应力计算公式中设置弯矩贡献因子根据岩体细观颗粒三维粘结正应力公式和岩体细观颗粒三维粘结剪应力公式同时将这两个公式中A、I、J以及用A'、I'、J'及替换,然后将步骤4中的公式(7)~公式(9)以及步骤3中的公式(6)代入,可获得包含幂函数型时间效应且考虑弯扭贡献效应的岩体细观颗粒三维粘结法向正应力和三维粘结剪应力计算公式,分别见公式(25)和公式(26);步骤8:将步骤7中包含幂函数型时间效应且考虑弯扭贡献效应的代入公式(27),可确定带拉伸截止限的摩尔库伦细观颗粒粘结时效破裂准则,该准则包含幂函数型时间效应和弯扭贡献效应,该准则用于判断岩体细观颗粒三维粘结是否破裂以及破裂模式,在该准则的岩体细观颗粒三维粘结应力中包含了幂函数型时间效应和弯扭贡献效应;其中:fs为摩尔‑库伦细观颗粒三维粘结剪切时效破裂准则,fn为摩尔‑库伦细观颗粒三维粘结拉伸时效破裂准则,为第i个接触的含幂函数型时间效应且考虑弯矩贡献因子的岩体细观颗粒三维粘结剪应力,为第i个接触的含幂函数型时间效应且考虑扭矩贡献因子的岩体细观颗粒三维粘结正应力,fs表示岩体细观颗粒三维粘结剪切破裂准则,fs大于等于0表示三维粘结剪切破裂,小于0表示三维粘结未发生剪切破裂;fn表示岩体细观颗粒三维粘结拉伸破裂准则,fn大于等于0表示三维粘结拉伸破裂,小于0表示三维粘结未发生拉伸破裂;步骤9:如果步骤8中的公式(27)中的fs或fn大于等于0,表明三维粘结发生了破裂,此后岩体细观颗粒的空间运动模式采用考虑阻尼效应的三维线性接触模型来表达;如果步骤8中的公式(27)中的fs和fn都小于0,表明三维粘结未破裂,继续循环步骤2至8,计算、更新、判断岩体细观颗粒接触的三维粘结状态,直至岩体不产生新的三维粘结破裂或者三维粘结破裂加速发展而形成宏观破坏,循环终止。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长江水利委员会长江科学院,未经长江水利委员会长江科学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611160374.5/,转载请声明来源钻瓜专利网。
- 上一篇:一种模拟浪溅区波浪冲击动态应变检测装置
- 下一篇:电机下置式疲劳试验机