[发明专利]基于主成分分析‑BP神经网络的包虫病患者血清的光谱识别方法在审

专利信息
申请号: 201611178745.2 申请日: 2016-12-19
公开(公告)号: CN106596507A 公开(公告)日: 2017-04-26
发明(设计)人: 温浩;吕国栋;程金盈;吕小毅;莫家庆;刘辉;林仁勇;卢晓梅;李亮;毕晓娟;张传山;杨宁 申请(专利权)人: 新疆医科大学第一附属医院
主分类号: G01N21/65 分类号: G01N21/65
代理公司: 乌鲁木齐合纵专利商标事务所65105 代理人: 汤建武,杨涵
地址: 830011 新疆维吾尔自治区乌鲁木齐市*** 国省代码: 新疆;65
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及光谱识别技术领域,是一种基于主成分分析‑BP神经网络的包虫病患者血清的光谱识别方法,其按下述步骤进行第一步,分别吸取至少20名健康人和至少20名包虫病患者的血清,并将吸取的血清置于拉曼光谱仪中进行全波长扫描并进行采集数据;第二步,将采集的数据进行归一化处理;第三步,将进行归一化后的数据进行主成分分析,将主成分累计贡献率达到80%的所有主成分的得分作为BP神经网络的输入层节点。本发明采用基于主成分分析(PCA)和BP神经网络相结合的方法,建立了准确度较高的包虫病光谱诊断技术方案,诊断正确率高,操作方便,便于实施。
搜索关键词: 基于 成分 分析 bp 神经网络 包虫病 患者 血清 光谱 识别 方法
【主权项】:
一种基于主成分分析‑BP神经网络的包虫病患者血清的光谱识别方法,其特征在于按下述步骤进行:第一步,分别吸取至少20名健康人和至少20名包虫病患者的血清,并将吸取的血清置于拉曼光谱仪中进行全波长扫描并进行采集数据;第二步,将采集的数据进行归一化处理;第三步,将进行归一化后的数据进行主成分分析,将主成分累计贡献率达到80%的所有主成分的得分作为BP神经网络的输入层节点;第四步,输出节点数为1,经过实验分析对比,确定隐含层节点数,使用newff函数创建前馈神经网络,隐含层采用s型激活函数logsig,输出层采用线性激活函数purelin,训练函数采用trainlm,模型随机初始化后,输出神经元对健康人的输出值分别设定为1、输出神经元对包虫患者的输出值设定为2。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于新疆医科大学第一附属医院,未经新疆医科大学第一附属医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611178745.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top