[发明专利]一种基于动态自适应的风电集群功率预测方法有效

专利信息
申请号: 201611215714.X 申请日: 2016-12-26
公开(公告)号: CN106875033B 公开(公告)日: 2020-06-02
发明(设计)人: 彭小圣;樊闻翰;文劲宇;邓迪元;熊磊;宴青;张勇 申请(专利权)人: 华中科技大学;国家电网公司;国网新疆电力公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/08
代理公司: 武汉开元知识产权代理有限公司 42104 代理人: 唐正玉
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于动态自适应的风电集群功率预测方法,按以下步骤进行:步骤1:收集历史数据,对风电集群进行划分;步骤2:根据划分的风电集群,建立时间序列预测模型、数值天气预报预测模型、空间资源匹配预测模型三个预测模型,并训练风电集群三个预测模型的功率预测;步骤3:根据三种模型的训练误差评价结果选择训练误差评价结果最佳的预测模型;步骤4:收集实时数值天气预报NWP数据和实时功率测量数据;步骤5:根据训练过程中选择的预测模型,代入实时NWP数据和实时功率测量数据,得到子集群预测结果,将子集群的功率预测结果相加,得到集群总体预测结果。本发明针对不同工况的风电集群选取最佳的预测模型,提升预测精度。
搜索关键词: 一种 基于 动态 自适应 集群 功率 预测 方法
【主权项】:
一种基于动态自适应的风电集群功率预测方法,其特征在于按以下步骤进行:步骤1:收集风电场历史数据,根据当地的地理位置和电网拓扑结构对风电集群进行划分;步骤2:根据划分的风电集群,建立时间序列预测模型、数值天气预报预测模型、空间资源匹配预测模型三个预测模型,并训练风电集群三个预测模型的功率预测;步骤3:根据三种模型的训练误差评价结果选择训练误差评价结果最佳的预测模型;步骤4:收集实时数值天气预报NWP数据和实时功率测量数据;步骤5:根据训练过程中选择的预测模型,代入实时NWP数据和实时功率测量数据,得到子集群预测结果,将子集群的功率预测结果相加,得到集群总体预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学;国家电网公司;国网新疆电力公司,未经华中科技大学;国家电网公司;国网新疆电力公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611215714.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top