[发明专利]一种基于TLD的适用于无人机的变尺度目标跟踪方法有效
申请号: | 201611238512.7 | 申请日: | 2016-12-28 |
公开(公告)号: | CN106886748B | 公开(公告)日: | 2020-06-12 |
发明(设计)人: | 黄坤;吴国强;徐翔;尹中义;许克鹏;曲悠扬 | 申请(专利权)人: | 中国航天电子技术研究院 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京金智普华知识产权代理有限公司 11401 | 代理人: | 皋吉甫 |
地址: | 100094*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于图像处理、计算机视觉领域,具体涉及一种基于TLD的适用于无人机的变尺度目标跟踪方法。采用跟踪‑学习‑检测框架的设计思路,跟踪器采用中值光流跟踪器,检测器采用归一化相关检测器,学习器则采用改进的kNN检测器。基于无人机侦查视频序列的特点和难点,统筹算法的性能和适应性,融合中值光流法以及相关跟踪算法的优点,提出一种基于TLD框架下的适用于无人机的目标跟踪算法,解决了无人机视频处理系统目标跟踪的在目标给定不明确时目标鲁棒跟踪问题、待跟踪目标像素数较少,纹理不明显、目标外形姿态角度及尺度变化明显和跟踪处理的实时性问题。 | ||
搜索关键词: | 一种 基于 tld 适用于 无人机 尺度 目标 跟踪 方法 | ||
【主权项】:
一种基于TLD的适用于无人机的目标跟踪方法,所述目标跟踪方法基于TLD算法,所述TLD算法包括跟踪器、检测器及学习器,所述学习器基于kNN分类器;其特征在于,所述目标跟踪方法包括以下步骤:(1)初始化跟踪器、检测器及学习器;(2)跟踪器采用中值光流法依据初始位置预测当前帧目标的位置作为目标跟踪结果,跟踪器同时依据目标跟踪结果判断跟踪成功或跟踪失败;(3)检测器采用以目标为模板,利用归一化相关算法对搜索区域进行相关运算计算归一化相关系数,得到目标检测结果,检测器同时依据目标检测结果判断检测成功或检测失败;(4)学习器将所述目标跟踪结果和所述目标检测结果分别与待测目标利用归一化相关算法进行匹配得出归一化相关系数,依据最大相关系数选择目标跟踪结果或目标检测结果或目标跟踪结果和目标检测结果的均值作为目标最终结果;(5)学习器根据目标最终结果确定目标旋转角度及目标缩放系数;(6)结合目标最终结果、目标旋转角度及尺度变化更新学习器、跟踪器和检测器,进行下一步目标跟踪。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国航天电子技术研究院,未经中国航天电子技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611238512.7/,转载请声明来源钻瓜专利网。