[发明专利]一种基于循环神经网络的患病风险预测建模方法有效
申请号: | 201611247218.2 | 申请日: | 2016-12-29 |
公开(公告)号: | CN106778014B | 公开(公告)日: | 2020-06-16 |
发明(设计)人: | 吴健;林志文;顾盼;周立水;邓水光;李莹;尹建伟;吴朝晖 | 申请(专利权)人: | 浙江大学 |
主分类号: | G16H50/30 | 分类号: | G16H50/30;G16H50/70;G16H50/50 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 胡红娟 |
地址: | 310013 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于循环神经网络的患病风险预测方法,包括:(1)利用诊断的疾病作为训练样本,进行疾病名称分布式词向量训练,得到词向量映射矩阵,并进行存储;(2)再次利用诊断的疾病作为训练样本,进行循环神经网络训练,得到患病风险预测模型;(3)将病人历史记录中每种诊断疾病作为一个测试样本输入患病风险预测模型,得到患病风险预测结果。该方法利用循环神经网络与分布式词向量表达嵌入技术,解决了因医疗诊断数据具有维度高、数据稀疏、时序性强等特点导致的训练模型过于复杂、训练成本高以及训练准确率低等问题,实现了针对历史患病信息进行具有时序性的建模过程。 | ||
搜索关键词: | 一种 基于 循环 神经网络 患病 风险 预测 建模 方法 | ||
【主权项】:
一种基于循环神经网络的患病风险预测方法,包括以下步骤:(1)利用诊断的疾病作为训练样本,进行疾病名称分布式词向量训练,得到词向量映射矩阵,并进行存储;(2)再次利用诊断的疾病作为训练样本,进行循环神经网络训练,得到患病风险预测模型;(3)将病人历史记录中每种诊断疾病作为一个测试样本输入患病风险预测模型,得到患病风险预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611247218.2/,转载请声明来源钻瓜专利网。