[发明专利]一种基于密度峰值的大数据挖掘方法及装置在审

专利信息
申请号: 201710011108.4 申请日: 2017-01-06
公开(公告)号: CN106649877A 公开(公告)日: 2017-05-10
发明(设计)人: 许青林;刘沧生;熊梦琪;姜文超 申请(专利权)人: 广东工业大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 北京集佳知识产权代理有限公司11227 代理人: 张春水,唐京桥
地址: 510062 广东省*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明实施例公开了一种基于密度峰值的大数据挖掘方法及装置,本发明实施例包括第一阶段使用密度峰值聚类算法选定初始聚类中心;第二阶段,确定初始聚类数目以及对传统模糊C‑均值算法的加速收敛。在第一阶段算法中,通过使用密度峰值聚类中提供决策图,选定初始聚类中心,选择完成后,初始聚类中心数目即为聚类中心数,无需人工指定聚类数目。在第二阶段算法中,对传统模糊C‑均值算法的迭代过程进行优化,考虑局部密度对算法的影响,加入密度加权因子,使算法能够加速获取全局最优解,且加入振荡因子,使得算法能够加快收敛。
搜索关键词: 一种 基于 密度 峰值 数据 挖掘 方法 装置
【主权项】:
一种基于密度峰值的大数据挖掘方法,其特征在于,包括:S1:获取到数据集,并计算所述数据集的每两个数据之间的欧氏距离,得到距离矩阵;S2:获取到预置截断距离,并通过第一预置公式对所述距离矩阵和所述截断距离进行计算,得到所述数据集的各个数据的局部密度,并根据所述各个数据的局部密度确定各个数据的高密度距离;S3:构造以局部密度为横轴、高密度距离为纵轴的决策图,根据所述各个数据的局部密度和所述各个数据的高密度距离在所述决策图上选取聚类中心;S4:通过第二预置公式对所述聚类中心、预置密度加权系数、预置振荡因子进行计算得到隶属度矩阵,根据所述隶属度矩阵和所述距离矩阵构造目标函数,并将预置迭代次数的值增加一;S5:若所述目标函数小于预置容许误差或所述预置迭代次数不小于预置最大迭代次数,则结束,若所述目标函数不小于预置容许误差或所述预置迭代次数小于预置最大迭代次数,则执行S3。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710011108.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top