[发明专利]一种基于卷积神经网络的实时车型匹配方法在审

专利信息
申请号: 201710050763.0 申请日: 2017-01-23
公开(公告)号: CN106919949A 公开(公告)日: 2017-07-04
发明(设计)人: 张卫山;王志超;徐亮;赵德海;李忠伟;卢清华;宫文娟;宫法明 申请(专利权)人: 中国石油大学(华东)
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04
代理公司: 北京捷诚信通专利事务所(普通合伙)11221 代理人: 曲志乾,肖太升
地址: 266000 山东省*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于卷积神经网络的实时车型匹配方法,包括构建车型数据库,并设计卷积神经网络;利用车型数据库进行卷积神经网络训练,得到最优卷积神经网络及车型数据库中每种车型的车型特征;构建Storm的拓扑结构,信息流上层为数据源输入组件,信息流中层为布置了最优卷积神经网络的数据处理组件,信息流底层为布置了SVM分类器的数据处理组件;数据源输入组件将采集的实时视频流发给信息流中层数据处理组件,通过卷积神经网络提取车型特征;信息流底层数据处理组件利用SVM分类器对信息流中层发送的车型特征进行匹配,并返回匹配结果。本发明将卷积神经网络的特征提取技术与SVM分类方法和Storm架构相结合,提高车型匹配的准确率和效率。
搜索关键词: 一种 基于 卷积 神经网络 实时 车型 匹配 方法
【主权项】:
一种基于卷积神经网络的实时车型匹配方法,其特征在于,包括以下步骤:步骤S10、构建车型数据库,并设计用于车型识别的卷积神经网络;步骤S20、利用车型数据库对卷积神经网络进行训练,得到最优的卷积神经网络以及车型数据库中每种车型的车型特征;步骤S30、构建Storm的拓扑结构,其信息流上层为数据源输入组件spout,信息流中层为布置了最优卷积神经网络的数据处理组件bolt,信息流底层为布置了SVM分类器的数据处理组件bolt;步骤S40、数据源输入组件spout将采集的待匹配车辆实时视频流发给信息流中层数据处理组件bolt,该数据处理组件bolt通过卷积神经网络提取车型特征;步骤S50、信息流底层数据处理组件bolt利用SVM分类器对信息流中层发送的车型特征进行匹配,并返回匹配结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东),未经中国石油大学(华东)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710050763.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top