[发明专利]风电功率概率预测方法及装置有效
申请号: | 201710055611.X | 申请日: | 2017-01-25 |
公开(公告)号: | CN107067099B | 公开(公告)日: | 2020-06-19 |
发明(设计)人: | 汪宁渤;乔颖;马明;吕清泉;陈钊;吴问足;周强;鲁宗相 | 申请(专利权)人: | 清华大学;甘肃省电力公司风电技术中心;国网甘肃省电力公司;国家电网公司 |
主分类号: | G06F17/18 | 分类号: | G06F17/18;G06Q10/04;G06Q50/06;G06K9/62 |
代理公司: | 北京华进京联知识产权代理有限公司 11606 | 代理人: | 王程 |
地址: | 100084*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种风电功率概率预测方法及装置,所述方法包括:根据历史输出功率以及历史预测功率,获取风电场预测误差的统计特征;根据历史预测功率和风电场的NWP预测结果的风速波动量,获得风电概率预测的条件全集;通过K‑means聚类算法,将条件全集划分为若干条件子集;对处在每个条件子集下的误差集合形成条件经验分布,并检验其数字特征与风电场预测误差的统计特征中数字特征是否重合;若重合则通过K‑means聚类算法再次进行聚类;以及根据各时刻的风电功率预测结果以及条件经验分布,获得风电功率概率预测结果。本发明还涉及一种预测装置。本发明提供的风电功率概率预测方法能够差异性地提供误差分布函数,具有更高的预测准确度。 | ||
搜索关键词: | 电功率 概率 预测 方法 装置 | ||
【主权项】:
一种风电功率概率预测方法,其特征在于,所述方法包括:根据历史输出功率以及历史预测功率,获取风电场预测误差的统计特征;根据历史预测功率和风电场的数值天气预报NWP预测结果的风速波动量,获得风电概率预测的条件全集;通过K‑means聚类算法,将条件全集划分为若干条件子集;对处在每个条件子集下的误差集合形成条件经验分布,并检验其数字特征与风电场预测误差的统计特征中数字特征是否重合;若重合则通过K‑means聚类算法再次进行聚类;以及根据各时刻的风电功率预测结果以及条件经验分布,获得风电功率概率预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;甘肃省电力公司风电技术中心;国网甘肃省电力公司;国家电网公司,未经清华大学;甘肃省电力公司风电技术中心;国网甘肃省电力公司;国家电网公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710055611.X/,转载请声明来源钻瓜专利网。