[发明专利]基于时空学习的马尔科夫链微行程间隔时长预测方法在审

专利信息
申请号: 201710124969.3 申请日: 2017-03-03
公开(公告)号: CN106909993A 公开(公告)日: 2017-06-30
发明(设计)人: 隗海林;包翠竹;李明达;田崇河;王涵;李洪雪 申请(专利权)人: 吉林大学
主分类号: G06Q10/04 分类号: G06Q10/04
代理公司: 长春市四环专利事务所(普通合伙)22103 代理人: 张建成
地址: 130012 吉*** 国省代码: 吉林;22
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于时空学习的马尔科夫链微行程间隔时长预测方法,其工况数据采集模块采集大量速度工况数据作为训练样本和实时地采集车辆的速度工况数据,有效速度时间序列确定,对采集的工况数据进行分析判断数据的有效性和可靠性,去除噪音数据;怠速时长预测模块根据时间信息和空间信息确定与实时采集数据相关度更高的训练数据子集,并使用该子集合学习并转移矩阵,并使用该转移矩阵预测怠速时长类别。有效速度时间序列确定模块通过中值滤波方法去除采集的速度数据和经纬度数据中由于设备波动等原因出现的数据噪音,并根据速度数据的相关性确定最适合的有效速度时间序列的长度。本发明使用时间和空间上相关性较高的数据训练转移矩阵,预测下一次怠速工况可能的持续时间长度。
搜索关键词: 基于 时空 学习 马尔科夫链 微行 间隔 预测 方法
【主权项】:
一种基于时空学习的马尔科夫链微行程间隔时长预测方法,其特征在于:包括有工况数据采集模块、怠速时长预测模块和有效速度时间序列确定模块;所述的工况数据采集模块采集大量速度工况数据作为训练样本和实时地采集车辆的速度工况数据,有效速度时间序列确定,对采集的工况数据进行分析判断数据的有效性和可靠性,去除噪音数据;所述的怠速时长预测模块根据时间信息和空间信息确定与实时采集数据相关度更高的训练数据子集,并使用该子集合学习并转移矩阵,并使用该转移矩阵预测怠速时长类别;所述的有效速度时间序列确定模块通过中值滤波方法去除采集的速度数据和经纬度数据中由于设备波动等原因出现的数据噪音,并根据速度数据的相关性确定最适合的有效速度时间序列的长度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710124969.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top