[发明专利]一种基于迁移学习的疾病领域间病人相似性度量迁移系统有效
申请号: | 201710136858.4 | 申请日: | 2017-03-09 |
公开(公告)号: | CN106934235B | 公开(公告)日: | 2019-06-11 |
发明(设计)人: | 刘杰;倪嘉志;马志柔;吴怀林;叶丹 | 申请(专利权)人: | 中国科学院软件研究所 |
主分类号: | G16H50/70 | 分类号: | G16H50/70;G16H50/20 |
代理公司: | 北京科迪生专利代理有限责任公司 11251 | 代理人: | 杨学明;顾炜 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明一种基于迁移学习的疾病领域间病人相似性度量迁移系统,属于计算机人工智能软件技术领域。本发明系统通过构建数据预处理子模块、相似性度量评价子模块、相似性度量学习子模块、相似性度量迁移子模块四个子模块,完成疾病领域内病人相似性的度量和疾病领域间病人相似性的迁移。本发明目的在于克服在监督信息获取困难和特定疾病领域病人样本数量稀少的情况下传统度量学习无法有效工作的问题。此系统可以为当前精准医疗场景提供服务支持。 | ||
搜索关键词: | 一种 基于 迁移 学习 疾病 领域 病人 相似性 度量 系统 | ||
【主权项】:
1.一种基于迁移学习的疾病领域间病人相似性度量迁移系统,其特征在于:包括数据预处理子模块、相似性度量评价子模块、相似性度量学习子模块和相似性迁移学习子模块;数据预处理子模块,完成病人健康数据预处理任务;从医院数据库得到病人的四类信息数据,所述四类信息数据为病人基本信息、用药信息、化验信息和诊断信息数据,将上述四类信息数据分别进行数据清洗、医疗规则检验、标准化、向量化处理,得到病人特征向量矩阵,为相似性度量评价子模块、相似性度量学习子模块和相似性迁移学习子模块提供支持;相似性度量评价子模块,完成病人间相似性的评价任务;根据数据预处理子模块得到的病人特征向量矩阵,抽取所述矩阵中关于诊断信息的ICD10疾病编码,利用Jaccard系数来评价病人间的相似性,得到病人间相似性的评价结果,作为监督信息为相似性度量学习子模块和相似性迁移学习子模块提供支持;相似性度量学习子模块,完成疾病领域内病人相似性的度量工作;将从数据预处理子模块和相似性度量评价子模块分别得到的病人特征向量矩阵和病人间相似性的评价结果,利用度量学习模型处理,得到疾病领域内的度量矩阵,为相似性迁移学习子模块提供支持;相似性迁移学习子模块,完成疾病领域间病人相似性的迁移工作;根据预处理子模块得到的病人特征向量矩阵、相似性度量评价子模块得到的病人间相似性的评价结果和度量学习子模块得到的疾病领域内的度量矩阵,经过迁移学习模型处理,得到病人计算相似度适用的度量矩阵,完成在疾病领域间的病人相似性迁移工作。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院软件研究所,未经中国科学院软件研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710136858.4/,转载请声明来源钻瓜专利网。