[发明专利]基于数据增强的改进型卷积网络的图像超分辨率重建方法在审
申请号: | 201710151796.4 | 申请日: | 2017-03-15 |
公开(公告)号: | CN106952229A | 公开(公告)日: | 2017-07-14 |
发明(设计)人: | 欧阳宁;曾梦萍;林乐平;莫建文;袁华;张彤;首照宇 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06T3/40 | 分类号: | G06T3/40;G06T3/60;G06T5/00 |
代理公司: | 桂林市华杰专利商标事务所有限责任公司45112 | 代理人: | 杨雪梅 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于数据增强的改进型卷积网络的图像超分辨率重建方法,包括数据增强和网络结构改进的步骤。一方面采用多角度旋转和翻转样本集的方式增加了样本的多样性,因此可以获得多角度背景的特征实现特征的旋转不变性;充分的特征信息有利于提高图像的重建精度。另一方面本方法的网络模型利用深层卷积神经网络提取特征,多层的卷积层有利于提取更高级,更加完整的特征,然后用反卷积层作为重建层对卷积层输出的特征映射进行处理,恢复图像分辨率,从而得到超分辨率图像。由于卷积层缺乏旋转不变性的特性,本方法另外样本的多样性达到增加参数的目的,从而更好的拟合网络最终实现提高重建精度,并加快网络训练的收敛速度的效果。 | ||
搜索关键词: | 基于 数据 增强 改进型 卷积 网络 图像 分辨率 重建 方法 | ||
【主权项】:
基于数据增强的改进型卷积网络的图像超分辨率重建方法,其特征在于,包括以下步骤:(1)数据增强:对样本集的91张图像分别进行旋转90°、180°、270°、翻转0°、90°、180°、270°七种操作,然后以步伐r=14,有重叠的裁剪得到168000个fsub×fsub子图像作为原始HR图像,其中fsub=33;然后再对原始图像进行高斯模糊下采样得到输入数据集{Yi};(2)网络结构改进:构造一个四层网络模型,网络前三层由卷积层构成,用于提取图像特征信息作为特征提取层;最后一层为反卷积层作为重建层,将卷积层获得的特征信息用于重建,从而得到高分辨率图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710151796.4/,转载请声明来源钻瓜专利网。
- 上一篇:移动式芯棒圆跳动测径车
- 下一篇:一种在线CCD推扫测量系统
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置