[发明专利]一种基于散射卷积网络的手指静脉特征提取方法有效
申请号: | 201710164634.4 | 申请日: | 2017-03-20 |
公开(公告)号: | CN107122710B | 公开(公告)日: | 2020-06-30 |
发明(设计)人: | 陈朋;姜立;王海霞;党源杰;梁荣华 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于散射卷积网络的手指静脉特征提取方法,包括以下步骤:1)采集到手指静脉;2)对采集到的图像做基于最大内切矩阵感兴趣区域提取;3)对获得的ROI图像进行基于散射卷积网络的手指静脉特征提取,过程如下:先得到多分辨率小波函数,然后对ROI图像进行小波变换得到第一层的散射系数,再对第一层的散射结果进行第二次散射,得到第二次的散射系数,最后将每一个散射能量块的能量均值和方差组成图像的特征向量;4)通过支持向量机SVM进行分类。本发明提供一种信息丰富、安全性很高的基于散射卷积网络的手指静脉特征提取方法。 | ||
搜索关键词: | 一种 基于 散射 卷积 网络 手指 静脉 特征 提取 方法 | ||
【主权项】:
一种基于散射卷积网络的手指静脉特征提取方法,其特征在于:所述方法包括以下步骤:1)采集到掌手指静脉图像;2)对采集到的图像做基于最大内切矩阵感兴趣区域提取;3)将处理后的图像基于散射卷积网络的手指静脉特征提取,过程如下:先得到多分辨率小波函数,然后对ROI图像进行小波变换得到第一层的散射系数,再对第一层的散射结果进行第二次散射,得到第二次的散射系数,最后将每一个散射能量块的能量均值和方差组成图像的特征向量;4)通过支持向量机SVM进行分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710164634.4/,转载请声明来源钻瓜专利网。