[发明专利]一种基于深度学习的图像融合方法有效
申请号: | 201710211621.8 | 申请日: | 2017-04-01 |
公开(公告)号: | CN107103331B | 公开(公告)日: | 2020-06-16 |
发明(设计)人: | 蔺素珍;韩泽;郑瑶 | 申请(专利权)人: | 中北大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 太原科卫专利事务所(普通合伙) 14100 | 代理人: | 朱源 |
地址: | 030051 山*** | 国省代码: | 山西;14 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及图像融合方法,具体为一种基于深度学习的图像融合方法,本方法按如下步骤进行:基于自动编码器利用卷积层构建基本单元;将多个基本单元堆叠起来训练得到深度堆叠神经网络,并采用端对端的方式调整堆叠网络;利用该堆叠网络分解输入图像,得到各自的高频和低频特征映射图,分别利用局部方差取大和区域匹配度合并高频和低频特征映射图;并将高频融合特征映射图和低频融合特征映射图放回最后一层网络,得到最终的融合图像。本方法可以对图像进行自适应分解和重构,融合时只需高频和低频特征映射图各一幅,不需要人工定义滤波器个数和类型,也不需要选择图像的分解层数和滤波方向数,可以极大改善融合算法对先验知识的依赖性。 | ||
搜索关键词: | 一种 基于 深度 学习 图像 融合 方法 | ||
【主权项】:
一种基于深度学习的图像融合方法,其特征在于包括以下步骤:构建深度堆叠卷积神经网络基本单元:基本单元由高频子网、低频子网和融合卷积层构成,高频子网、低频子网又分别由三层卷积层构成,其中,第一层卷积层对输入信息进行限制,第二层卷积层对信息进行组合,第三层卷积层再将这些信息合并为映射图,先对基本单元进行训练,再将多个基本单元堆叠起来采用端对端的方式训练得到深度堆叠神经网络;利用该堆叠神经网络分别分解输入图像,在最后一个基本单元的第三层卷积层分别得到各自的高频和低频特征映射图,利用局部方差取大得到融合后的高频特征映射图,利用区域匹配度得到融合后的低频特征映射图;将高频特征映射图和低频特征映射图放回最后一个基本单元的融合卷积层,得到最终的融合图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中北大学,未经中北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710211621.8/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序