[发明专利]基于典型相关性分析及线性插值的土壤养分模型转移方法有效

专利信息
申请号: 201710236906.7 申请日: 2017-04-12
公开(公告)号: CN106951720B 公开(公告)日: 2019-05-31
发明(设计)人: 李雪莹;范萍萍;侯广利;孔祥峰;吴宁 申请(专利权)人: 山东省科学院海洋仪器仪表研究所
主分类号: G16C20/30 分类号: G16C20/30;G01N21/25
代理公司: 青岛华慧泽专利代理事务所(普通合伙) 37247 代理人: 沙莎;袁红红
地址: 266071 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于一种模型转移方法,公开了基于典型相关性分析及线性插值的土壤养分模型转移方法,步骤如下:1)获取不同地区间土壤光谱数据,并设定主、从样品;2)划分主样品校正集和检验集,以偏最小二乘法建立主样品校正模型,并对其模型效果进行评价;3)划分从样品标准集和未知集;4)对从样品进行光谱预处理;5)采用典型相关性分析结合线性插值(CCA‑LI)算法模型转移,得到从样品未知集的预测结果。本发明实现了运用一个土壤养分含量模型,解决不同地区间土壤养分含量预测的难题,在保证该模型预测效果的同时,减少了土壤养分化学方法测量的时间,降低成本,节省人力物力,快速、简单的实现土壤养分的预测。
搜索关键词: 基于 典型 相关性 分析 线性插值 土壤 养分 模型 转移 方法
【主权项】:
1.基于典型相关性分析及线性插值的土壤养分模型转移方法,其特征在于,包括以下步骤:(1)采集某一地区土壤样品,测得其光谱数据和养分化学值,并将该土壤样品作为主样品,用于主样品模型的建立;(2)采集其他地区土壤样品,采用与主样品同样的光谱仪测得其光谱数据和养分化学值,将其作为从样品,用于对主样品模型的预测;(3)采用Kennard‑Stone算法划分土壤主样品的校正集和检验集;以偏最小二乘法(PLS)建立主样品校正集模型,并对主样品检验集进行预测,根据绝对系数R2和相对分析误差RPD判断主样品模型效果;(4)采用Kennard‑Stone算法划分土壤从样品的标准集和未知集,其中标准集用于主样品校正集模型转移的标准样品,未知集用于检验模型转移后土壤样品的预测结果;(5)对主样品校正集和检验集及从样品标准集和未知集进行光谱预处理;(6)采用典型相关性分析结合线性插值(CCA‑LI)算法对从样品进行模型转移,代入原主样品校正模型,得到土壤从样品未知集的预测结果;其中,典型相关性分析结合线性插值(CCA‑LI)算法具体步骤为:1)采用CCA算法求出转移矩阵F:采用Kennard‑Stone算法从主样品校正集X中筛选出与从样品标准集X样品个数一样的矩阵X主cca,根据X主cca和X计算矩阵C,由矩阵C计算特征值与特征向量,其相关公式如下:将每一个非零特征值ρ所对应的特征向量wm和ws分别归为矩阵Wm和Ws,即为X主cca和X的典型相关系数Wm和Ws,对X主cca和X进行CCA分解,计算出X主cca和X的典型相关成分Lm和LS,最终得到转移矩阵F,公式如下:Lm=X主cca×WmLS=X×WsF=Ws×F1×F22)根据转移矩阵F,分别对从样品标准集X和未知集X光谱进行转换,得到经CCA算法转换后的标准集X标F和未知集X未F相关公式如下:X标F=X·FX未F=X·F3)建立预测值校正函数:用主模型分别对从样品标准集和未知集转化后的光谱矩阵进行预测,分别计算标准集中每个样品与未知集中的第i个样品的共生距离D(i),共生距离D(i)为转化光谱的欧氏距离与化学预测值的绝对偏差之和,计算公式为:d2(p,i)=|Y标F(p)‑Y未F(i)|其中,m为光谱波长点数,X标F和X未F分别为标准集和未知集的转换后的光谱矩阵,Y标F和Y未F分别为标准集和未知集经转换矩阵F转换后的预测值,d1(p,i)为标准集中第p个样品与未知集中第i个样品之间光谱的欧式距离,d2(p,i)为标准样品中第p个样品与未知样品中第i个样品之间预测值的绝对值偏差,d1(i)和d2(i)分别为d1(p,i)和d2(p,i)中p取1‑n所有值组成的向量,n为标准集的样品个数;寻找D(i)中2个最小值对应的序列p1和p2,根据标准集中的第p1、p2个样品对应的预测值和实测值,建立插值函数,将未知集中第i个样品的预测值代入插值函数,得到校正后的预测值Y未p,相关公式如下:其中,Y(p1)和Y(p2)为标准集养分含量的实测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东省科学院海洋仪器仪表研究所,未经山东省科学院海洋仪器仪表研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710236906.7/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top