[发明专利]一种基于自适应特征降维的多标记数据分类方法在审

专利信息
申请号: 201710250167.7 申请日: 2017-04-17
公开(公告)号: CN107220656A 公开(公告)日: 2017-09-29
发明(设计)人: 龚晓庆;王磊;许鹏飞;郭军;肖云;徐丹;陈晓江;房鼎益 申请(专利权)人: 西北大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 西安恒泰知识产权代理事务所61216 代理人: 李婷,张明
地址: 710069 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于自适应特征降维的多标记数据分类方法,该方法的过程包括数据读取、重构标记矩阵、构造降维模型、降维模型优化、最优化求解、特征降维以及多标记数据分类等。本发明投影矩阵的最优化求解过程,对高维特征的数据,进行线性变换,投影到低维空间,有效的降低分类任务中数据的复杂程度,去除冗余特征,保留有辨识度的特征,很好的解决了传统方法导致计算复杂度高的问题,提高了数据分类的效率。本发明构造降维模型的过程,利用多标记数据的标记矩阵,通过聚类得到潜在语义信息,有效解决了原始数据中噪声对分类准确率的影响,提高了数据分类的准确率。
搜索关键词: 一种 基于 自适应 特征 标记 数据 分类 方法
【主权项】:
一种基于自适应特征降维的多标记数据分类方法,其特征在于,包括以下步骤:步骤一,读取已知分类的多标记数据,分别将已知分类的多标记数据的特征和标记存储为特征矩阵X和标记矩阵Y;读取待分类的多标记数据,将待分类的多标记数据的特征存储为矩阵T;步骤二,将标记矩阵Y重构为潜在语义矩阵V和系数矩阵B以降低标记矩阵Y中噪声的影响;步骤三,引入投影矩阵W,利用截断范数构造降维模型如下:上式中,xi是特征矩阵X的第i行,n是特征矩阵X中的样本个数,vi是潜在语义矩阵V的第i行,||·||F是F‑范数,||·||2是2‑范数,α和γ是系数,取值范围为(0,1];步骤四,在降维模型中加入几何结构约束,以使降维前后数据的局部几何结构保持一致;步骤五,利用降维模型构造目标函数,采用梯度下降法对目标函数进行迭代,直到目标函数收敛,得到投影矩阵W的最优解;步骤六,对已知分类的多标记数据、待分类的多标记数据进行投影降维处理,并对降维后的数据进行分类处理,完成。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710250167.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top