[发明专利]输入饱和条件下超声波电机伺服自适应控制系统及方法有效
申请号: | 201710268740.7 | 申请日: | 2017-04-21 |
公开(公告)号: | CN106877774B | 公开(公告)日: | 2019-06-07 |
发明(设计)人: | 傅平 | 申请(专利权)人: | 闽江学院 |
主分类号: | H02P23/04 | 分类号: | H02P23/04;H02P25/02 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 蔡学俊 |
地址: | 350108 福建省*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 发明涉及一种输入饱和条件下超声波电机伺服自适应控制系统及方法,该系统包括基座、设于基座上的用于固定超声波电机的超声波电机固定架,超声波电机一侧输出轴与光电编码器相连接,另一侧输出轴与飞轮惯性负载相连接;飞轮惯性负载的输出轴经联轴器与力矩传感器相连接;光电编码器的信号输出端、力矩传感器的信号输出端分别接至控制系统。该控制系统由反步控制器和电机组成,整个控制器的系统建立在反步计算的基础上,从而能获得更好的控制效能。本发明所提出的一种输入饱和条件下超声波电机伺服自适应控制系统及方法,不仅控制准确度高,而且结构简单、紧凑,使用效果好。 | ||
搜索关键词: | 输入 饱和 条件下 超声波 电机 伺服 自适应 控制系统 方法 | ||
【主权项】:
1.一种输入饱和条件下超声波电机伺服自适应控制系统,包括一基座、设于基座上的用于固定一超声波电机的超声波电机固定架,其特征在于:所述超声波电机一侧输出轴与一光电编码器相连接,另一侧输出轴与一飞轮惯性负载相连接;所述飞轮惯性负载的输出轴经一联轴器与一力矩传感器相连接;所述光电编码器的信号输出端、所述力矩传感器的信号输出端分别接至一控制系统;其中,所述的输入饱和条件下超声波电机伺服自适应控制系统还包括:所述控制器系统采用反步控制的控制方式,通过构建反步控制器,控制所述超声波电机的电机转子旋转角度,再通过计算转子的旋转角度控制所述超声波电机的速度;并通过李亚普诺夫稳定性定理构建用于表征反步控制参数强健性学习法则的李亚普诺夫函数;其中,所述超声波电机的驱动系统的动态方程为:
其中,Ap=‑B/J,BP=J/Kt>0,CP=‑1/J;B为阻尼系数,J为转动惯量,Kt为电流因子,Tf(v)为摩擦阻力力矩,TL为负载力矩,U(t)是电机的输出力矩,θr(t)为通过光电编码器测量得到的位置信号;记系统的参数均已知,外力干扰、交叉耦合干扰和摩擦力均为零,则电机的标准模型为:
其中,An为Ap的标准值,Bn为BP的标准值;若产生不确定项,则系统的动态方程为:
其中,D(t)为总集不确定项,Cn为CP的标准值,ΔA,ΔB、ΔC为微小变化量,并记为:
令所述总集不确定项的边界为已知,|D(t)|≤ρ,ρ为预设正常数项;将非线性系统动力学表示为:![]()
![]()
![]()
其中,
x表示位置信号;ai为未知常数和控制增益参数,Yi是已知的连续性或非线性函数,w是控制输入,x1(t)=x(t),xn=x(n‑1),a=[‑a1,a2,L,‑ar]T,Y=[Y1,Y2,L,Yr]T;b是一个未知常数,c为常数,θ=bc;![]()
表示有界的外部干扰,
u0、w0为u、w的初始值,u为回滞系统的输出,d(t)为扰动项;u(w(t))∈R,输入饱和为:
其中,uM是u(t)的饱和界限;令系统有界输入有界输出稳定,通过反步自适应控制律w(t)使得闭环系统全局稳定,跟踪误差y(t)‑yr(t)通过参数进行调整;则所述非线性系统动力学表示为:![]()
![]()
![]()
y=x1其中,
a=[‑a1,‑a2,...,‑ar]T,Y=[Y1,Y2,...,Yr]T;x表示位置信号;为了补偿饱和度的影响,构造以下系统以产生信号λ(t)=[λ1,...,λn]T:![]()
![]()
其中,ci是正的常数,λ1表示待构造系统的信号1;λ2表示待构造系统的信号2;λi表示待构造系统的信号i;Δu=u(w)‑w,进行以下坐标变化:z1=y‑yr‑λ1
其中,i=2,3,...,n,αi‑1是要确定的第i步虚拟控制;y表示系统的实际输出值;yr表示系统的位置设定值;为了避免电机中出现不可预期的不确定项,所述反步控制器采用反步控制方法对系统进行伺服控制,所述反步控制器所采用的反步控制通过如下步骤实现:步骤S1:令:
构建虚拟控制律α1为:α1=‑c1(x1‑yr);其中,c1>1/2是正设计参数;构建李雅普诺夫函数函数V1为:
且V1的导数为:
其中,
步骤Si,i=2,...,n‑1:令:
构建虚拟控制律αi:
其中,ci是设计的正参数,满足c1>1,i=2,...,n‑1,则:
构建李雅普诺夫函数函数Vi为:
且Vi的导数为:
其中,
步骤Sn:对于i=n,则:
构建自适应控制律w为:
其中,cn是满足cn>1/2的正设计参数,
是a的估计;该参数
的更新规律为:
其中,Γ是正定矩阵;构建李亚普诺夫函数V:
其中,
且V的导数为
其中,
a表示需要确定的虚拟控制;
表示a的估计值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于闽江学院,未经闽江学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710268740.7/,转载请声明来源钻瓜专利网。