[发明专利]一种入侵检测方法及装置有效
申请号: | 201710308371.X | 申请日: | 2017-05-04 |
公开(公告)号: | CN107145778B | 公开(公告)日: | 2020-07-28 |
发明(设计)人: | 姚海鹏;王淇艺;章扬;张培颖;王露瑶;殷志强 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G06F21/55 | 分类号: | G06F21/55;G06K9/62 |
代理公司: | 北京柏杉松知识产权代理事务所(普通合伙) 11413 | 代理人: | 赵元;马敬 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例提供了一种入侵检测方法及装置,应用于服务器,方法包括:以预设修正率对待检测入侵数据进行采样,将采样得到的数据作为修正数据;对训练数据和修正数据进行聚类处理,获得分类聚类簇;对每个分类聚类簇进行分类模型训练,获得每个分类聚类簇对应的分类模型;利用获得的分类模型对剩余数据进行分类,获得剩余数据的攻击类型,并将所获得的攻击类型确定为待检测入侵数据的攻击类型,其中,剩余数据为:待检测入侵数据中除修正数据之外的数据。应用本发明实施例所提供的方案,通过将待检测入侵数据应用到分类模型的构建过程中,来获得分类模型,能够使得获得的分类模型对数据分类的结果较为准确,进而可以提高入侵检测算法的准确率。 | ||
搜索关键词: | 一种 入侵 检测 方法 装置 | ||
【主权项】:
一种入侵检测方法,应用于服务器,其特征在于,包括:以预设修正率对待检测入侵数据进行采样,将采样得到的数据作为修正数据;对训练数据和所述修正数据进行聚类处理,获得分类聚类簇;对每个分类聚类簇进行分类模型训练,获得每个分类聚类簇对应的分类模型;利用获得的分类模型对剩余数据进行分类,获得所述剩余数据的攻击类型,并将所获得的攻击类型确定为所述待检测入侵数据的攻击类型,其中,所述剩余数据为:所述待检测入侵数据中除所述修正数据之外的数据。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710308371.X/,转载请声明来源钻瓜专利网。