[发明专利]稀缺样本数据集条件下BN模型参数的计算方法有效

专利信息
申请号: 201710364444.7 申请日: 2017-05-22
公开(公告)号: CN107220710B 公开(公告)日: 2020-05-19
发明(设计)人: 郭文强;李然;侯勇严;刘洲洲;张宝嵘;高文强 申请(专利权)人: 陕西科技大学
主分类号: G06N7/00 分类号: G06N7/00
代理公司: 西安新思维专利商标事务所有限公司 61114 代理人: 李罡
地址: 710021*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及稀缺样本数据集条件下BN模型参数的学习系统及方法,步骤包括:获取领域定性约束知识和稀缺样本数据集;依据所述领域定性约束知识和自助法,获得满足多组约束的BN参数集;采用传统参数学习方法计算出所述稀缺样本数据集条件下BN模型的初始参数;根据所述满足多组约束的BN参数集和所述初始参数,计算所述稀缺样本数据集条件下BN模型的参数。本发明可通过领域定性约束知识和稀缺样本数据集来学习到稀缺样本数据集条件下BN模型的初始参数,从而避免了现有方法学习结果的不精确性和复杂性的问题,能够实现在稀缺样本数据集条件下通过便捷的方法获得精确的BN模型的参数,从而扩展了人工智能算法的应用范围。
搜索关键词: 稀缺 样本 数据 条件下 bn 模型 参数 计算方法
【主权项】:
稀缺样本数据集条件下BN模型参数的学习方法,其特征在于:包括以下步骤:获取领域定性约束知识和稀缺样本数据集;依据所述领域定性约束知识和自助法,获得满足多组约束的BN参数集;采用传统参数学习方法计算出所述稀缺样本数据集条件下BN模型的初始参数;根据所述满足多组约束的BN参数集和所述初始参数,计算所述稀缺样本数据集条件下BN模型的参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于陕西科技大学,未经陕西科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710364444.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top