[发明专利]一种基于深度Q学习策略的手写数字识别方法有效
申请号: | 201710381771.3 | 申请日: | 2017-05-26 |
公开(公告)号: | CN107229914B | 公开(公告)日: | 2020-07-03 |
发明(设计)人: | 乔俊飞;王功明;李文静;韩红桂 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 刘萍 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度Q学习策略的手写数字识别方法属于人工智能和模式识别领域,针对手写数字标准对象MNIST数据库的识别精度低的问题。首先,利用深度自编码器(Deep Auto‑Encoder,DAE)对原始信号进行抽象特征提取,Q学习算法将DAE对原始信号的编码特征作为当前状态。然后,过对当前状态进行分类识别得到一个奖励值,并将奖励值返回给Q学习算法以便进行迭代更新。通过最大化奖励值来完成手写数字的高精确识别。本发明将具有感知能力的深度学习和具有决策能力的强化学习结合在一起,通过深度自编码器与Q学习算法相结合构成Q深度信念网络(Q‑DBN),提高了识别精度,同时缩短了识别时间。 | ||
搜索关键词: | 一种 基于 深度 学习 策略 手写 数字 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710381771.3/,转载请声明来源钻瓜专利网。