[发明专利]一种基于神经网络的轨道交通实时客流预测方法在审
申请号: | 201710387632.1 | 申请日: | 2017-05-27 |
公开(公告)号: | CN107103394A | 公开(公告)日: | 2017-08-29 |
发明(设计)人: | 杨梦宁;徐玲;葛永新;洪明坚;黄晟;王洪星;陈飞宇;李小斌;许任婕;赵小超 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/26;G06N3/04 |
代理公司: | 北京天奇智新知识产权代理有限公司11340 | 代理人: | 马冬新 |
地址: | 400044 *** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于神经网络的轨道交通实时客流预测方法,主要解决现有技术中存在的准确度低的技术问题,本发明通过采用从自动售检票系统采集n个历史数据作为原始样本,对原始样本进行预处理得到预处理样本;依据非线性自回归神经网络,建立关于时间序列的短时客流预测模型p(t),所述非线性自回归神经网络包括输入层、输入滞时、隐藏层、输出层及输出滞时;根据非线性自回归神经网络模型p(t),以及训练算法,进行实时客流预测,所述实时客流预测包括短时客流预测、高峰预测及客流分布站点预测的技术方案,较好的解决了该问题,可用于轨道交通实时客流预测中。 | ||
搜索关键词: | 一种 基于 神经网络 轨道交通 实时 客流 预测 方法 | ||
【主权项】:
一种基于神经网络的轨道交通实时客流预测方法,其特征在于:所述方法包括:(1)从自动售检票系统采集n个历史数据作为原始样本,对原始样本进行预处理得到预处理样本;(2)依据步骤(1)中预处理样本,依据非线性自回归神经网络,建立关于时间序列的短时客流预测模型p(t),所述非线性自回归神经网络包括输入层、输入滞时、隐藏层、输出层及输出滞时:p(t)=f(p(t-1),p(t-2),...,p(t-n),W)=f[p(t),W],]]>(3)根据步骤(2)中短时客流预测模型p(t),以及训练算法,进行实时客流预测,所述实时客流预测包括短时客流预测、高峰预测及代表性的客流分布站点预测;其中,t表示时间,p表示客流量,延时阶数n为正整数,W表示权重矩阵。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710387632.1/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理