[发明专利]一种面向图像分类的深度卷积神经网络的优化方法有效
申请号: | 201710411668.9 | 申请日: | 2017-06-05 |
公开(公告)号: | CN107330446B | 公开(公告)日: | 2020-08-04 |
发明(设计)人: | 白琮;黄玲;陈佳楠;郝鹏翼;潘翔;陈胜勇 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省杭*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种面向图像分类的深度卷积神经网络的优化方法,包括以下步骤;步骤一、构建图像分类卷积神经网络,步骤二、训练图像分类卷积神经网络;步骤三、测试图像分类卷积神经网络,过程如下:将预处理好的测试数据集送入训练好的网络模型,网络的Accuracy层根据Softmax层输出的概率值以及输入层的标签值输出一个精确度值,即测试图像被正确分类的概率;经过上述步骤的操作,即可实现面向图像分类的深度卷积神经网络的优化。本发明提供一种有效缩小语义鸿沟、分类准确性较高的面向图像分类的深度卷积神经网络的优化方法。 | ||
搜索关键词: | 一种 面向 图像 分类 深度 卷积 神经网络 优化 方法 | ||
【主权项】:
一种面向图像分类的深度卷积神经网络的优化方法,其特征在于:包括以下步骤;步骤一、构建图像分类卷积神经网络,过程如下:步骤1.1:该网络由五个卷积层、三个池化层和三个全连接层,和一个Softmax层组成;步骤1.2:池化层用最大值‑均值池化方式,将卷积层的输出分别用最大值、均值池化方式先处理,再将最大值和均值池化后的输出用Eltwise函数,采用总和操作输出;步骤1.3:在全连接层采用Maxout激活函数,把FC‑6层和FC‑7层的输出后接Slice函数随机将输出分为两个部分;步骤1.4:在Slice层后接Eltwise函数,采用最大值输出操作,通过步骤1.3和1.4实现全连接层的Maxout激活;步骤1.5:在全连接层的FC‑7和FC‑8层之间增加一个新的隐层H,隐层H是一个全连接层,其神经元的活动由后续的网络层的语义编码和分类调节;步骤1.6:隐层H后接一个Sigmoid激活函数来控制隐层神经元的活动,把输出控制为{0,1};步骤二、训练图像分类卷积神经网络,过程如下:步骤2.1:在网络的输入层对输入的图像进行随机裁剪,并将裁剪后的图像和裁剪旋转180度后的图像一起输入上述网络模型中;步骤2.2:计算训练数据集的均值文件;步骤2.3:采用预训练网络模型的方式,即用在ImageNet数据集上预训练好AlexNet的权值来初始化网络,并对隐层和输出层的权值采用随机初始化的方式;步骤2.4:向初始化后的网络模型中输入训练样本和标签,通过反向传播算法在目标数据集上微调网络参数,使损失函数值最小;步骤三、测试图像分类卷积神经网络,过程如下:将预处理好的测试数据集送入训练好的网络模型,网络的Accuracy层根据Softmax层输出的概率值以及输入层的标签值输出一个精确度值,即测试图像被正确分类的概率;经过上述步骤的操作,即可实现面向图像分类的深度卷积神经网络的优化。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710411668.9/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序