[发明专利]一种基于引入隐藏信息极限学习机算法的智能分类方法在审

专利信息
申请号: 201710444621.2 申请日: 2017-06-13
公开(公告)号: CN109086784A 公开(公告)日: 2018-12-25
发明(设计)人: 张文博;杨生辉;刘崇晧;段育松;李鑫;张志宏;方镇;李婧婷 申请(专利权)人: 昆山鲲鹏无人机科技有限公司
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 西安智萃知识产权代理有限公司 61221 代理人: 赵双
地址: 215331 江苏省苏州市昆山*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于引入隐藏信息极限学习机算法的智能分类方法,包括步骤S1:在LUPI框架中,训练样本引入隐藏信息;S2:根据ELM原理,得出引入隐藏信息后的ELM+的最优表达式;S3:利用拉格朗日乘子法求解该最优表达式,得出ELM+的输出方程;S4:得出利用ELM+解决二分类问题时以及解决多分类问题时的决策方程;S5:将待预测样本代入所述决策方程,输出类别标签,进行分类。本发明以极限学习机算法为基础,通过在LUPI框架下,在训练阶段利用训练样本及其隐藏信息共同求解输出权值,来进一步提高传统ELM算法的识别性能,是一种整体性能更优、适用领域更广、识别结果更符合实际需求的智能分类器设计方法。
搜索关键词: 隐藏信息 算法 极限学习机 智能分类 引入 训练样本 求解 多分类问题 输出 类别标签 实际需求 识别性能 输出方程 训练阶段 二分类 样本 决策 分类 预测
【主权项】:
1.一种基于引入隐藏信息极限学习机算法的智能分类方法,其特征在于,包括以下步骤:S1:在LUPI框架下,向训练样本中引入隐藏信息,构造新的训练样本;S2:根据ELM原理,将引入隐藏信息的新的训练样本代入ELM算法公式,得出引入隐藏信息后的ELM+的表达式,所述ELM+的表达式为最优化方程式;S3:利用拉格朗日乘子法求解步骤S2所述的最优化方程式得到最优解,即ELM+的输出方程;S4:将所述ELM+的输出方程代入基本二分类及多分类问题决策方程,得出利用ELM+解决二分类问题时以及解决多分类问题时的决策方程;S5:将待预测样本代入所述决策方程,输出类别标签,进行分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆山鲲鹏无人机科技有限公司,未经昆山鲲鹏无人机科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710444621.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top