[发明专利]一种改进词向量模型的语义计算方法有效

专利信息
申请号: 201710452382.5 申请日: 2017-06-15
公开(公告)号: CN107291693B 公开(公告)日: 2021-01-12
发明(设计)人: 刘志煌;刘冶;李宏浩;傅自豪;邝秋华 申请(专利权)人: 广州赫炎大数据科技有限公司
主分类号: G06F40/30 分类号: G06F40/30;G06F16/30
代理公司: 广州骏思知识产权代理有限公司 44425 代理人: 吴静芝
地址: 510000 广东省广州*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种改进词向量模型的语义计算方法,包括以下步骤:S1:语料预处理;S2:词性标注,对语料预处理后得到的词语进行标注词性;S3:向量初始化,对词性标注后得到的词语和词性进行向量化;S4:上下文向量整合,对词语的上下文词语向量及词性向量进行计算整合;S5:构建哈夫曼树并训练网络,优化目标函数并判断误差是否达到阈值;S6:向量获取,获取词语向量和词性向量;S7:向量应用,应用词语向量和词性向量进行语义计算。相比于现有技术,本发明在向量中加入了词性的因素,并对现有的Word2vec模型进行改进。同时,根据该改进后的模型进行了创新的应用,拓展了Word2vec进行语义计算的功能。
搜索关键词: 一种 改进 向量 模型 语义 计算方法
【主权项】:
一种改进词向量模型的语义计算方法,其特征在于:包括以下步骤:S1:语料预处理,对语料进行清理,规范化,分词操作;S2:词性标注,对语料预处理后得到的词语进行标注词性;S3:向量初始化,对词性标注后得到的词语和词性进行向量化;S4:上下文向量整合,对词语的上下文词语向量及词性向量进行计算整合;S5:构建哈夫曼树并训练网络,优化目标函数并判断误差是否达到阈值;S6:向量获取,获取词语向量和词性向量;S7:向量应用,应用词语向量和词性向量进行语义计算。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州赫炎大数据科技有限公司,未经广州赫炎大数据科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710452382.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top