[发明专利]基于高分辨率卫星影像的道路宽度估计方法有效
申请号: | 201710454604.7 | 申请日: | 2017-06-15 |
公开(公告)号: | CN107203761B | 公开(公告)日: | 2019-09-17 |
发明(设计)人: | 臧彧;王程;王小芳;夏智超;栗佩康;李军 | 申请(专利权)人: | 厦门大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
代理公司: | 厦门创象知识产权代理有限公司 35232 | 代理人: | 尤怀成 |
地址: | 361000 *** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于高分辨率卫星影像的道路宽度估计方法,根据高分辨率卫星影像中道路的特征,定义了一种新颖的道路宽度描述符,通过统计固定大小的道路块内的像素分布并用直方图的形式表示,可以描述道路的宽度特征;在道路宽度描述符的基础上,结合卷积神经网络,提出了基于卷积神经网络的道路宽度估计方法;针对道路宽度估计结果中存在的宽度不连续问题,根据道路宽度的连续性,定义了一种基于空间一致性的道路宽度估计能量函数,通过最小化该能量函数可以实现卫星影像中道路宽度类别的合理估计。 | ||
搜索关键词: | 卫星影像 高分辨率 卷积神经网络 能量函数 描述符 估计结果 宽度特征 像素分布 不连续 直方图 最小化 并用 统计 | ||
【主权项】:
1.基于高分辨率卫星影像的道路宽度估计方法,其特征在于,包括以下步骤:S1、截取不同宽度等级的道路块样本,将道路块样本转换为道路宽度描述符,利用不同宽度等级道路块样本转换得到的宽度描述符训练卷积神经网络以得到道路宽度类别预测模型;S2、提取待进行宽度估计的卫星图像的道路中心线,沿道路中心线进行滑窗,以道路中心线上每个像素点为中心截取固定大小的道路块并转换为道路宽度描述符,利用S1所获得的道路宽度类别预测模型对该步骤所获得的道路宽度描述符进行预测,得到道路块属于每个宽度类别的概率;S3、根据道路宽度的连续性及空间一致性定义道路宽度估计能量函数,对道路中心线上的每个像素点寻求一个最优的宽度类别使其对应的道路宽度估计能量函数取值最小,则各像素点所对应的最优的宽度类别的宽度范围即以各像素点为中心的道路块的宽度范围;其中,道路宽度估计能量函数记为L={l1…ln},其表示以像素p为中心的道路块的宽度类别集合,像素p为位于道路中心线上的像素点;D(P)=1‑P(p,li),P(p,li)为以像素p为中心的道路块属于某一宽度类别li的概率,P(p,li)由训练好的道路宽度类别预测模型给出;S(L)为平滑项,表示对以像素p为中心的道路块宽度进行估计时,来自相邻道路宽度类别的影响;参数ε为平衡因子,调整平滑项对宽度估计结果的影响程度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710454604.7/,转载请声明来源钻瓜专利网。