[发明专利]一种基于新型粒子滤波算法的图像分割方法有效

专利信息
申请号: 201710457337.9 申请日: 2017-06-16
公开(公告)号: CN107274408B 公开(公告)日: 2019-11-19
发明(设计)人: 曾念寅;张红;邱弘 申请(专利权)人: 厦门大学
主分类号: G06T7/10 分类号: G06T7/10
代理公司: 35204 厦门市首创君合专利事务所有限公司 代理人: 张松亭<国际申请>=<国际公布>=<进入
地址: 361000 *** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于新型粒子滤波算法的图像分割方法,包括:针对要分割的图像特点,建立相应的动态空间模型;采集训练图像,对其进行预处理,提取感兴趣区域;以像素点作为样本单位,选取网络输入特征,组建训练样本;构建深度神经网络模型,完成深度网络训练,输入测试样本得到初始分割结果;利用初始分割结果生成粒子群,并采用粒子群优化算法将粒子移动到高似然区域,将得到的结果作为粒子滤波的建议性分布;采用上述建议性分布的新粒子滤波算法对状态量进行估计,得到最终的图像分割结果。本发明采用深度学习和粒子群优化算法产生建议性分布,有效解决了粒子退化问题,能够获得较好的图像分割效果,具有较强的应用性和鲁棒性。
搜索关键词: 一种 基于 新型 粒子 滤波 算法 图像 分割 方法
【主权项】:
1.一种基于新型粒子滤波算法的图像分割方法,其特点在于,包括:/n步骤a,针对要分割的图像特点,建立包含转移方程和观测方程的动态空间模型,以目标区域边界上的序列点作为状态量;所述转移方程表示当前时刻与前一时刻之间状态量的关系,所述观测方程反映当前时刻图像分割的效果;/n步骤b,采集若干相关图像作为训练图像集,并对其进行预处理,提取出包含目标区域的感兴趣区域;/n步骤c,以像素点作为样本单位,根据图像特点,分析并选取具有辨识力的网络输入特征,做归一化处理组建为训练样本;所述网络输入特征包括领域内的灰度值、与中心点之间的距离和对比值;/n步骤d,构建深度神经网络模型,取深信度网络,输入训练样本进行训练,并且根据图像分割效果来调节深度网络参数,确定深度网络模型;/n步骤e,将待分割图像按照步骤c同样的方式组建为测试样本,输入深度网络模型通过一次前向传播得到初始的分割结果;/n步骤f,利用初始分割结果生成粒子群,并采用粒子群优化算法将粒子移动到高似然区域,得到的结果作为粒子滤波的建议性分布;/n步骤g,根据建立的动态空间模型,采用含上述建议性分布的新型粒子滤波算法对状态量进行估计,得到最终的图像分割结果。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710457337.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top