[发明专利]一种高可靠性燃料电池堆封装设计方法有效
申请号: | 201710467621.4 | 申请日: | 2017-06-20 |
公开(公告)号: | CN107204481B | 公开(公告)日: | 2019-06-25 |
发明(设计)人: | 刘丽芳;刘博;吴承伟;张伟;马国军;吕永涛 | 申请(专利权)人: | 大连理工大学 |
主分类号: | H01M8/2404 | 分类号: | H01M8/2404 |
代理公司: | 大连理工大学专利中心 21200 | 代理人: | 李晓亮;潘迅 |
地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种高可靠性燃料电池堆封装设计方法,属于燃料电池堆系统封装技术领域,利用力学理论和可靠性理论对电池堆进行简化,依次确定出电堆内组件的可靠度随接触应力的变化规律,进而确定各组件的最佳接触应力,通过对电堆组件的尺寸和封装力进行设计,实现了提升电堆可靠度的目的。本发明方便快捷、灵活多变,在保证封装精度的情况下能够极大减少计算耗费,缩短电池堆封装设计周期。 | ||
搜索关键词: | 一种 可靠性 燃料电池 封装 设计 方法 | ||
【主权项】:
1.一种高可靠性燃料电池堆封装设计方法,其特征在于,该设计方法中涉及的燃料电池堆由多级单电池周期性排列组成,对燃料电池堆的膜电极MEA与密封件gasket的厚度差进行设计;所述的单电池的结构为:膜电极MEA位于单电池中部,密封件gasket包覆在膜电极MEA的边缘,膜电极MEA由两层气体扩散层GDL及其夹层质子交换膜PEM组成,双极板BPP位于膜电极MEA的两侧;设计方法包括以下步骤:第一步,根据组件强度准则确定强度分布采用均值和变异系数CV表征组件强度的分布,假设组件的强度及涉及到的各变量服从高斯分布,组件的强度上限和下限即为强度的均值上限和下限,组件强度由组件强度准则决定,组件强度准则包括组件的性能指标和屈服极限;根据各组件强度准则,确定不同组件的强度上下限;组件gasket的强度上下限由材料的屈服极限和确保密封性能的最小密封压力决定;组件PEM的强度上下限由材料的屈服极限和电堆内部反应气体的压强决定;组件GDL的强度上下限由渗透率和界面接触电阻决定;第二步,根据等效刚度模型和均值一阶二次矩法,确定不同组件上的应力分布2.1)利用等效刚度模型建立电堆组件的应力表达式,如下所示:σMEA=f(Ei,Ai,ti,F) i=1,2,3,4 (1)σgasket=g(Ei,Ai,ti,F) i=1,2,3,4 (2)其中,Ei、Ai、ti、F为随机变量,分别代表各组件上的弹性模量、接触面积、组件厚度、双极板上的封装力;i代表组件编号,1、2、3和4分别代表PEM、GDL、gasket和BPP;σMEA和σgasket分别为组件MEA与gasket的接触应力,由各组件的弹性模量、组件接触面积、组件厚度和封装力决定;随机变量Ei、Ai、ti、F具有不确定性,其均值和变异系数由电堆型号和生产工艺决定;组件上的接触应力由随机变量决定;在燃料电池堆的可靠性分析中,随机变量相当于直接变量,直接变量相当于函数中的自变量,接触应力相当于间接变量,间接变量相当于函数中的因变量;2.2)利用均值一阶二次矩法,确定不同组件上的应力分布已知各自变量的分布特征条件下,利用一阶二次矩法近似求得因变量的分布特征;假设各随机变量服从正态分布,引入变异系数CV,计算接触应力的分布特征,计算公式如下:![]()
![]()
![]()
其中,μx,MEA,μx,gasket代表MEA与gasket上接触应力的均值;
μF代表各组件上弹性模量、接触面积、厚度以及封装力的均值;
CVF代表各组件上弹性模量、接触面积、厚度以及封装力的变异系数;CVMEA,CVgasket代表MEA与gasket上接触应力的变异系数,显然其数值是由各直接变量的均值和变异系数决定的;在已知各直接变量的变异系数取值范围的情况下,根据应力表达式(1)‑(2)和公式(3)‑(6)求出接触应力的变异系数的取值范围;第三步,利用应力‑强度分布干涉理论计算组件MEA和gasket的可靠度根据组件的强度标准,结合应力‑强度分布干涉理论,根据以下公式确定组件可靠度;![]()
![]()
其中,Rcomp代表组件的可靠度,Φ是高斯函数:![]()
与
代表不同强度标准下组件的联结系数;
与
代表组件的强度上下限均值;μx,comp代表组件接触应力的均值;CVy和CVx分别代表组件强度和组件接触应力的变异系数;第四步,对燃料电池堆进行可靠性设计由组件MEA与gasket的厚度,得到gasket与MEA之间的厚度差δ;以厚度差δ和BPP上的封装力F为设计变量,根据等效刚度模型,建立电堆封装过程的力学方程(10)‑(14),对燃料电池堆进行可靠性设计,设计目标使封装后组件接触应力为最佳值;F=kint·(Δ‑δ)+kext·Δ (10)kint·(Δ‑δ)=μx,MEA·ABPP‑MEA (11)kext·Δ=μx,gasket·Agasket (12)![]()
其中,kint和kext分别代表电池内外部区域的等效刚度,具体数值由等效刚度模型计算得到;kMEA为膜电极等效刚度;kBPP‑rib为双极板流道肋等效刚度;kBPP‑base为双极板基板区域等效刚度;μx,MEA和μx,gasket分别代表MEA和gasket上的最佳接触应力均值,其值为已知量;Agasket和ABPP‑MEA分别代表gasket的横截面面积和BPP与MEA之间的接触面积;Δ代表在封装过程中电池端板处于刚体模型下时电池端板之间的总压缩量,δ代表MEA与gasket之间的厚度差,F代表封装力。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710467621.4/,转载请声明来源钻瓜专利网。