[发明专利]基于连续功率谱分析的电力负荷预测优化方法在审

专利信息
申请号: 201710477986.5 申请日: 2017-06-21
公开(公告)号: CN107301475A 公开(公告)日: 2017-10-27
发明(设计)人: 杜杰;彭丽霞;王雷 申请(专利权)人: 南京信息工程大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/00;G06N3/08
代理公司: 南京纵横知识产权代理有限公司32224 代理人: 董建林
地址: 210019 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于连续功率谱分析的电力负荷预测优化方法,采用连续功率谱分析方法,提取电力负荷时间序列中隐含的显著周期序列并分离得到残差序列,采用基于粒子群算法优化的BP神经网络对显著周期序列进行预测,获得各显著周期序列的预测结果;采用粒子群算法优化的RBF神经网络对残差序列的一阶差分序列进行预测,后经差分反运算得到残差序列的预测结果,最后将平均电力负荷时间序列的平均值与各显著周期序列的预测结果以及残差序列的预测结果相加获得最终预测结果。本发明针对电力负荷数据的周期性特点,建立预测模型能够大幅提高短期电力负荷预报精度。
搜索关键词: 基于 连续 功率 谱分析 电力 负荷 预测 优化 方法
【主权项】:
一种基于连续功率谱分析的电力负荷预测优化方法,其特征在于:包括读入原始采样电力负荷时间序列,并按预报间隔要求将其转换为平均电力负荷时间序列,然后计算出平均电力负荷时间序列的距平序列;采用连续功率谱分析方法,提取平均电力负荷时间序列的距平序列中隐含的显著周期序列,并分离得到残差序列;采用粒子群算法优化的BP神经网络对显著周期序列进行预测,获得各显著周期序列的预测结果;采用粒子群算法优化的RBF神经网络对残差序列的一阶差分序列进行预测,后经差分反运算得到残差序列的预测结果;将平均电力负荷时间序列的平均值与各显著周期序列的预测结果以及残差序列的预测结果相加获得最终预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710477986.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top