[发明专利]一种基于改进的深度玻尔兹曼机肺结节特征提取方法有效

专利信息
申请号: 201710507191.4 申请日: 2017-06-28
公开(公告)号: CN107316294B 公开(公告)日: 2020-03-13
发明(设计)人: 赵涓涓;张婷;强彦;罗嘉滢 申请(专利权)人: 太原理工大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06K9/62
代理公司: 北京恒创益佳知识产权代理事务所(普通合伙) 11556 代理人: 宋华
地址: 030024 *** 国省代码: 山西;14
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于改进的深度玻尔兹曼机肺结节特征提取和良恶性分类方法,包括以下步骤:步骤A,通过阈值概率图像图方法从CT图像分割肺结节,得到感兴趣区域(ROI),并裁剪成同一大小的结节图像;步骤B,设计有监督的深度学习算法Pnd‑EBM实现肺结节的诊断,其中包括三大步骤:B1采用基于深度玻尔兹曼机(DBM)提取肺结节ROI的具有深层表达能力的特征;B2、采用稀疏交叉熵惩罚因子改进代价函数,以解决训练过程中“特征同质化”现象;B3,采用基于极限学习机(ELM)将提取出来的肺结节特征进行良恶性分类。本发明的方法基于改进的深度波尔兹曼机肺结节特征提取方法,优于传统的特征提取方法,避免了人工提取复杂性及特征选择的差异性,能够为临床诊断提供参考依据。
搜索关键词: 一种 基于 改进 深度 玻尔兹曼机肺 结节 特征 提取 方法
【主权项】:
一种基于改进的深度玻尔兹曼机肺结节特征提取和良恶性分类方法,其特征在于,包括以下步骤:步骤A,采用阈值概率图方法从肺部CT图像分割肺结节,得到感兴趣区域(ROI),并裁剪成同一大小的结节图像存入样本数据库;步骤B,设计有监督的深度学习算法Pnd‑EBM实现肺结节的诊断,具体为采用基于深度玻尔兹曼机(DBM)提取肺结节ROI的具有深层表达能力的特征:通过DBM两个隐层提取肺结节浅层和高层特征,并通过修改代价函数,解决训练过程中特征同质化现象,从而获得表达肺结节高维的特征信息,并为下一步分类做准备;然后采用基于极限学习机(ELM)将提取的肺结节特征进行良恶性分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于太原理工大学,未经太原理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710507191.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top