[发明专利]一种基于深度学习的心音智能诊断系统及方法有效
申请号: | 201710515210.8 | 申请日: | 2017-06-29 |
公开(公告)号: | CN107529645B | 公开(公告)日: | 2019-09-10 |
发明(设计)人: | 肖斌;徐韵秋;李伟生;王国胤 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G16H50/20 | 分类号: | G16H50/20;G16H80/00;G16H70/20;G06K9/62 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 刘小红 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明请求保护一种基于深度学习的心音智能诊断系统及方法,涉及生物信号处理、模式识别、大数据、深度学习领域。包括:1)用户通过心音采集设备或智能可穿戴式设备对心音音频数据进行采集;2)数据通过网络传输到云端服务器,进行心音音频数据的存储、建档;3)在云端服务器上采用基于逻辑回归‑隐半马尔科夫模型的心音分割算法对心音数据进行分割,并用一维卷积神经网络对分割后的心音数据进行自动特征提取和分类;4)诊断结果通过网络反馈给用户的同时存储在云端,以提供给相关机构和指定医院作为用户的临床病史参考;5)由专业医生确诊后的用户心音数据可作为训练数据扩充进云端服务器中的心音数据库中,不断提升心音诊断系统的诊断能力。 | ||
搜索关键词: | 一种 基于 深度 学习 心音 智能 诊断 系统 方法 | ||
【主权项】:
1.一种基于深度学习的心音智能诊断系统,其特征在于,包括:心音采集设备,智能可穿戴式设备及云端服务器;其中:心音采集设备,主要用于采集用户一段时间内的心音数据,将采集得到的声音信号转换成数字信号,心音采集设备输出的已转换为数字信号的心音数据通过互联网或移动网络传输至云端服务器;智能可穿戴式设备,主要用于实时无间断地采集用户的心音数据,将采集得到的声音信号转换成数字信号,智能可穿戴式设备输出的已转换为数字信号的心音数据通过互联网或移动网络传输至云端服务器;云端服务器,主要用于心音数据存储,建立用户心音数据库,云端服务器上运行基于深度学习的心音智能诊断算法,根据采集的心音数据智能诊断是否异常,将诊断结果反馈给用户的同时存储在云端服务器中,以提供给相关机构和指定医院作为用户的临床病史参考;所述基于深度学习的心音智能诊断算法包括心音分类器训练步骤、心音分类器的诊断步骤和心音数据扩充步骤三个阶段,通过卷积神经网络对心音数据库中的心音自动提取特征和智能诊断,通过和心音数据库中的心音标签进行比较,不断迭代降低分类错误率,最终学习到一个神经网络模型,将这个训练好的神经网络模型用来对用户上传的心音进行诊断,用户上传的心音数据和心音智能诊断系统的诊断结果由专业医生分析确诊后,可作为心音数据库的扩充数据;其中心音分类器的训练阶段具体包括:1)利用基于逻辑回归‑隐半马尔科夫的心音分割算法将数据库中的心音记录分割为不同的包含完整心动周期的心音片段;2)对心音片段进行预处理:分解为不同频段,变换成不同尺度;3)将包含原始及多频段、多尺度信息的心音片段输入到一个多通道的一维的卷积神经网络进行训练,经过多次迭代得到一个能够识别异常心音的神经网络模型;4)采用阈值分类的方法,选取一个阈值,使得数据库中的心音片段诊断结果在转化为心音记录诊断结果时能取得最高准确率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710515210.8/,转载请声明来源钻瓜专利网。