[发明专利]一种基于深度学习卷积神经网络的车牌检测识别方法在审

专利信息
申请号: 201710531085.X 申请日: 2017-07-03
公开(公告)号: CN107220638A 公开(公告)日: 2017-09-29
发明(设计)人: 夏春秋 申请(专利权)人: 深圳市唯特视科技有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/32;G06K9/34;G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 518057 广东省深圳市高新技术产业园*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明中提出的一种基于深度学习卷积神经网络的车牌检测识别方法,其主要内容包括数据采集模块、检测识别训练模块、字符定位测试模块,其过程为,首先使用构造自动储存系统来归类真实世界中含有车牌的图像,在不同光照、可视角度、场景中采集足够数量的车牌与切割字符图像,然后使用一系列深度神经网络进行车牌检测与识别的训练,得到的模型再由切割好的字符单独进行检测与识别,最终合并成为结果。本发明可以处理不同场景多种不同条件下的车牌识别,提供一个深度学习框架来进行字符分割与识别,同时提高了车牌识别的效率与鲁棒性。
搜索关键词: 一种 基于 深度 学习 卷积 神经网络 车牌 检测 识别 方法
【主权项】:
一种基于深度学习卷积神经网络的车牌检测识别方法,其特征在于,主要包括数据采集模块(一);检测识别训练模块(二);字符定位测试模块(三)。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市唯特视科技有限公司,未经深圳市唯特视科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710531085.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top