[发明专利]基于深度学习的施工隔离栅栏状态智能检测的方法及系统在审
申请号: | 201710579428.X | 申请日: | 2017-07-17 |
公开(公告)号: | CN109271828A | 公开(公告)日: | 2019-01-25 |
发明(设计)人: | 季昆玉;贾俊;陆杰;侯卫东 | 申请(专利权)人: | 国网江苏省电力公司泰州供电公司;赛特斯信息科技股份有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 上海智信专利代理有限公司 31002 | 代理人: | 王洁;郑暄 |
地址: | 225300 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于深度学习技术实现施工隔离栅栏状态智能检测的方法及系统,包括、从视频监控系统中获取实时图像作为监控图像、建立针对所述的施工隔离栅栏状态进行分类的深度神经网络模型、对施工隔离栅栏进行监控处理操作、对监控图像进行归类并进行状态分类判断、针对所述的施工隔离栅栏发现异常状态启动告警。采用该基于深度学习技术实现施工隔离栅栏状态智能检测的方法及系统,能精确区分施工栅栏正常放置状态与非正常放置状态。当训练好深度神经网络模型后,对施工隔离栅栏的分类检测仅仅需要非迭代的前向运算,能满足实时检测的要求。本发明提供的施工隔离栅栏状态的智能检测方法运行速度快、检测精度高,因此能保障告警的及时性,能严格防范施工的安全隐患。 | ||
搜索关键词: | 隔离栅栏 施工 智能检测 神经网络模型 告警 放置状态 技术实现 监控图像 视频监控系统 安全隐患 分类检测 监控处理 实时检测 实时图像 异常状态 状态分类 非迭代 归类 前向 学习 运算 栅栏 分类 检测 防范 发现 | ||
【主权项】:
1.一种基于深度学习技术实现施工隔离栅栏状态智能检测的方法,其特征在于,所述的方法包括以下步骤:(1)从视频监控系统中获取实时图像作为监控图像;(2)建立针对所述的施工隔离栅栏状态进行分类的深度神经网络模型;(3)对所述的施工隔离栅栏进行监控处理操作;(4)对所述的监控图像进行归类并进行状态分类判断,如果所述的监控图像中所述的隔离栅栏状态正常,则返回上述步骤(3),否则继续步骤(5);(5)针对所述的施工隔离栅栏发现异常状态启动告警。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网江苏省电力公司泰州供电公司;赛特斯信息科技股份有限公司,未经国网江苏省电力公司泰州供电公司;赛特斯信息科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710579428.X/,转载请声明来源钻瓜专利网。