[发明专利]一种基于深度学习的‘宏to微转换模型’的微表情自动识别方法有效
申请号: | 201710587663.1 | 申请日: | 2017-07-18 |
公开(公告)号: | CN107273876B | 公开(公告)日: | 2019-09-10 |
发明(设计)人: | 贲晛烨;庞建华;冯云聪;任亿;赵子君;张鑫 | 申请(专利权)人: | 山东大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/02 |
代理公司: | 济南金迪知识产权代理有限公司 37219 | 代理人: | 吕利敏 |
地址: | 250199 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于深度学习的‘宏to微转换模型’的微表情自动识别方法,包括:A、微表情样本处理:1)对微表情数据集样本和宏表情数据集样本进行预处理;2)构建跨模态元组损失函数的样本对;B、跨模态‘宏to微’转换模型训练:3)训练AU检测网络,初始化AU检测网络参数,训练一个柔性最大值损失函数;4)固定AU检测网络参数,初始化跨模态‘宏to微’转换模型参数,训练跨模态‘宏to微’转换模型;C、微表情识别:根据训练好的卷积神经网络模型,初始化测试参数,将用于测试的样本送入训练好的卷积神经网络模型中,经过网络前向传播之后输出识别率。本发明较已有方法更具有鲁棒性。 | ||
搜索关键词: | 一种 基于 深度 学习 to 转换 模型 表情 自动识别 方法 | ||
【主权项】:
1.一种基于深度学习的‘宏to微转换模型’的微表情自动识别方法,其特征在于,包括:A、微表情样本处理1)对微表情数据集样本和宏表情数据集样本进行预处理;2)构建跨模态元组损失函数的样本对;B、跨模态‘宏to微’转换模型训练3)训练AU检测网络,初始化AU检测网络参数,以基于时空全卷积层的AU检测网络训练一个柔性最大值损失函数Softmax Loss Function;4)固定AU检测网络参数,初始化跨模态‘宏to微’转换模型参数,训练跨模态‘宏to微’转换模型,通过训练同时减少一个跨模态元组损失函数和一个柔性最大值损失函数的值;C、微表情识别根据训练好的卷积神经网络模型,初始化测试参数,将用于测试的样本送入训练好的卷积神经网络模型中,经过网络前向传播之后输出识别率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710587663.1/,转载请声明来源钻瓜专利网。