[发明专利]可调节量化位宽的神经网络量化与压缩的方法及装置有效
申请号: | 201710624244.0 | 申请日: | 2017-07-27 |
公开(公告)号: | CN107480770B | 公开(公告)日: | 2020-07-28 |
发明(设计)人: | 程健;贺翔宇;胡庆浩 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 北京市恒有知识产权代理事务所(普通合伙) 11576 | 代理人: | 郭文浩 |
地址: | 100080 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及神经网络技术领域,具体提出一种卷积神经网络量化与压缩的方法及装置。旨在解决现有对神经网络量化与压缩的方法对网络性能造成较大损失的问题。本发明的方法包括获取原始卷积神经网络的权值张量和输入特征张量,并基于预先设定的量化位宽,对权值张量和输入特征张量进行定点量化,并将得到的权值定点表示张量以及输入特征定点表示张量替换原来的权值张量和输入特征张量,得到对原始卷积神经网络量化与压缩后的新的卷积神经网络。本发明能够根据不同的任务需要灵活地调整位宽,无需调整算法结构和网络结构即可实现对卷积神经网络的量化与压缩,减少对内存以及存储资源的占用。本发明还提出一种存储装置和处理装置,具有上述有益效果。 | ||
搜索关键词: | 调节 量化 神经网络 压缩 方法 装置 | ||
【主权项】:
一种卷积神经网络量化与压缩的方法,其特征在于,包括:获取原始卷积神经网络卷积层初始的权值张量、以及除所述原始卷积神经网络的第一层以外各层初始的输入特征张量;基于预先设定的量化位宽,对所述初始的权值张量以及所述初始的输入特征张量进行定点量化,分别得到权值定点表示张量以及输入特征定点表示张量;利用所述权值定点表示张量以及所述输入特征定点表示张量,分别替换所述初始的权值张量以及所述初始的输入特征张量,得到对所述原始卷积神经网络量化与压缩后的新的卷积神经网络。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710624244.0/,转载请声明来源钻瓜专利网。