[发明专利]一种深度学习模型的高效转换方法及装置有效

专利信息
申请号: 201710669779.X 申请日: 2017-08-07
公开(公告)号: CN107480789B 公开(公告)日: 2020-12-29
发明(设计)人: 杨敏;艾国;张韵东 申请(专利权)人: 北京中星微电子有限公司
主分类号: G06N7/04 分类号: G06N7/04
代理公司: 北京布瑞知识产权代理有限公司 11505 代理人: 孟潭
地址: 100191 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明实施例的深度学习模型的高效转换方法,用于解决深度学习模型开发效率和运算效率较低的技术问题。方法包括:根据通用深度学习框架建立与NPU模型对应的数据标准化框架;利用所述数据标准化框架将深度学习模型的参数转换为所述数据标准化框架的标准参数;将所述标准参数转换为NPU模型的参数。本发明针对各通用深度学习框架的参数结构为特定处理器建立统一的数据标准化框架,根据通用深度学习框架形成的深度学习模型的参数可以利用数据标准化框架统一的数据结构形成标准数据,使得处理器进行数据解析处理的过程与深度学习模型的结构相关性大大降低,使得处理器处理过程的开发与深度学习模型的开发可以有效分离。还包括相应的高效转换装置。
搜索关键词: 一种 深度 学习 模型 高效 转换 方法 装置
【主权项】:
一种深度学习模型的高效转换方法,包括:根据通用深度学习框架建立与NPU模型对应的数据标准化框架;利用所述数据标准化框架将深度学习模型的参数转换为所述数据标准化框架的标准参数;将所述标准参数转换为NPU模型的参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京中星微电子有限公司,未经北京中星微电子有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710669779.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top