[发明专利]一种基于深度学习的红外图像电力设备实时检测方法在审
申请号: | 201710676658.8 | 申请日: | 2017-08-09 |
公开(公告)号: | CN107563412A | 公开(公告)日: | 2018-01-09 |
发明(设计)人: | 姚祺;龚小谨;林颖 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04 |
代理公司: | 杭州求是专利事务所有限公司33200 | 代理人: | 林超 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的红外图像电力设备实时检测方法。采集多幅包含已知电力设备的红外图像,每幅红外图像均已标示目标框,目标框是含有单个已知电力设备的图像区域,每幅红外图像均具有设备级标签;将红外图像及其对应的设备级标签输入到电力设备检测神经网络中,利用带动量的SGD算法训练电力设备检测神经网络;采用训练后的电力设备检测神经网络对未知待测图像进行处理,获得未知待测图像中电力设备的位置和种类的检测结果。本发明方法和传统的红外图像电力设备检测方法相比,得到了更好的性能,同时能够达到实时的处理速度。 | ||
搜索关键词: | 一种 基于 深度 学习 红外 图像 电力设备 实时 检测 方法 | ||
【主权项】:
一种基于深度学习的红外图像电力设备实时检测方法,其特征是,包括如下步骤:(1)采集多幅包含已知电力设备的红外图像I,每幅红外图像I均已标示目标框,目标框是含有单个已知电力设备的图像区域,每幅红外图像I均具有设备级标签,设备级标签为[ci,xi,yi,θi,wi,hi],其中i表示目标框的序号,ci表示目标框内所包含设备的类别,xi,yi分别表示目标框中心点的x坐标和y坐标,θi,wi,hi分别表示目标框的倾斜角、宽度和高度;(2)将图像I及其对应的设备级标签输入到电力设备检测神经网络中,利用带动量(momentum)的SGD算法训练电力设备检测神经网络;(3)采用训练后的电力设备检测神经网络对未知待测图像进行处理,获得未知待测图像中电力设备的位置和种类的检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710676658.8/,转载请声明来源钻瓜专利网。