[发明专利]一种基于集成卷积编码的医疗问答语义聚类方法有效
申请号: | 201710723583.4 | 申请日: | 2017-08-22 |
公开(公告)号: | CN107516110B | 公开(公告)日: | 2020-02-18 |
发明(设计)人: | 余志文;戴丹 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李斌 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于集成卷积编码的医疗问答语义聚类方法,涉及机器学习领域,所述方法包括以下步骤:医疗咨询平台用户问答语料采集,卷积核的选取,融合不同卷积核的特征表示,利用自编码机获取最终数据表征,进行医疗咨询问答语义聚类。与传统的深度学习方法相比:本方法用不同的卷积核来提取不同的特征,提取的特征更加充分和多样化,并且使用不同的特征合并方法,将提取到的特征进行融合表示,因此本发明泛化能力强,语义聚类准确率高,基于该方法能够更好地帮助用户了解自身情况,并可辅助医生进行疾病检测,对搭建医疗的自动问答系统具有很大的应用价值。 | ||
搜索关键词: | 一种 基于 集成 卷积 编码 医疗 问答 语义 方法 | ||
【主权项】:
一种基于集成卷积编码的医疗问答语义聚类方法,其特征在于,所述方法包括以下步骤:步骤1:从医疗平台上获取医疗问答数据集,对医疗问答数据集进行预处理,并得到输入矩阵;步骤2:用卷积编码网络对不同的输入矩阵选取不同的卷积核进行核聚类,对核聚类后的聚类质量和多样性进行计算,根据聚类质量和多样性挑选出表示文本特征最好的n个卷积核;步骤3:将步骤2中挑选的卷积核分别通过卷积神经网络来进行训练操作;步骤4:融合不同卷积核的特征表示结果;步骤5:将融合后的特征表示结果输入自编码机,进行输入重构训练得到最佳特征表示;步骤6:将编码得到的最佳特征表示进行聚类,得到最终医疗文本语义聚类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710723583.4/,转载请声明来源钻瓜专利网。
- 上一篇:非球面光学镜片调节系统
- 下一篇:一种售卖机缺货检测方法及装置