[发明专利]一种基于深度学习特征和点到集合距离度量学习的目标跟踪方法有效
申请号: | 201710730930.6 | 申请日: | 2017-08-23 |
公开(公告)号: | CN107491761B | 公开(公告)日: | 2020-04-03 |
发明(设计)人: | 张盛平;刘鑫丽;齐元凯;张维刚 | 申请(专利权)人: | 哈尔滨工业大学(威海) |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
代理公司: | 济南诚智商标专利事务所有限公司 37105 | 代理人: | 郑宪常 |
地址: | 264209*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习特征和点到集合距离度量学习的目标跟踪方法,包括以下步骤:在跟踪的起始帧随机选取若干目标样本和背景样本;对目标样本进行目标样本特征提取,对背景样本进行背景样本特征提取;将提取的目标样本特征聚类成若干个目标模板集合,将提取的背景样本特征聚类成若干个背景模板集合;通过降低同类别样本间距离并增大不同样本间的距离来学习投影矩阵;根据高斯分布对后续帧进行目标候选采集;提取目标候选的特征,并使用投影矩阵将目标模板集合、背景模板集合和目标候选投影到共同的子空间;计算每个目标候选到所有目标模板集合的距离,距离之和作为每个目标候选的得分,最终的跟踪结果为距离最小的前若干个目标候选的平均值。 | ||
搜索关键词: | 一种 基于 深度 学习 特征 集合 距离 度量 目标 跟踪 方法 | ||
【主权项】:
一种基于深度学习特征和点到集合距离度量学习的目标跟踪方法,其特征是,包括以下步骤:在跟踪的起始帧随机选取若干目标样本和背景样本;对目标样本进行目标样本特征提取,对背景样本进行背景样本特征提取;将提取的目标样本特征聚类成若干个目标模板集合,将提取的背景样本特征聚类成若干个背景模板集合;通过降低同类别样本间距离并增大不同样本间的距离来学习投影矩阵;根据高斯分布对后续帧进行目标候选采集;提取目标候选的特征,并使用投影矩阵将目标模板集合、背景模板集合和目标候选投影到共同的子空间;计算每个目标候选到所有目标模板集合的距离,距离之和作为每个目标候选的得分,最终的跟踪结果为距离最小的前若干个目标候选的平均值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学(威海),未经哈尔滨工业大学(威海)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710730930.6/,转载请声明来源钻瓜专利网。
- 上一篇:危险车辆即时检测系统
- 下一篇:一种行人检测方法