[发明专利]一种短时电力负荷预测的方法及装置有效
申请号: | 201710770943.6 | 申请日: | 2017-08-31 |
公开(公告)号: | CN107506868B | 公开(公告)日: | 2021-01-26 |
发明(设计)人: | 王星华;鲁迪;彭显刚;贺小平;郑伟钦 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06N3/04;G06N3/08;G06Q50/06 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 罗满 |
地址: | 510062 广东省*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种短时电力负荷预测的方法,通过综合分位回归和鲁棒极限学习机,并利用混合粒子群算法(PSOGSA)优化后所建立的混合预测模型来对电力负荷进行预测,分位回归利用历史电力数据影响因素的多个分位数来得到未来某时刻电力负荷预测数据的条件分布的相应的分位数方程,分位回归中输入的电力数据的随机扰动不需要做任何分布上的假定,就可以详细的描述预测负荷值的统计分布,使得整个预测模型具有很强的稳健性;而鲁棒极限学习机对异常负荷值的鲁棒性更强,将上述两种方法结合在一起,并通过PSOGSA优化后所形成的混合模型可以准确的对电力负荷进行预测;本发明还提供了一种短时电力负荷预测的装置,同样具有上述有益效果。 | ||
搜索关键词: | 一种 电力 负荷 预测 方法 装置 | ||
【主权项】:
一种短时电力负荷预测的方法,其特征在于,所述方法包括:获取历史电力数据;调用预先建立的预测模型,根据所述历史电力数据计算出电力负荷预测数据,所述预测模型为综合分位回归和鲁棒极限学习机所建立的预测模型;所述预测模型为通过预先获取的训练数据集训练并利用PSOGSA进行优化得到的预测模型,所述训练数据集为根据所述历史电力数据得到的所述训练数据集。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710770943.6/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理