[发明专利]一种基于机器学习的客户价值模型优化方法在审
申请号: | 201710807555.0 | 申请日: | 2017-09-08 |
公开(公告)号: | CN107609700A | 公开(公告)日: | 2018-01-19 |
发明(设计)人: | 李星龙;李伟;汤紫瑜 | 申请(专利权)人: | 欧若纳信息科技(苏州)有限公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q30/02;G06N99/00 |
代理公司: | 苏州唯亚智冠知识产权代理有限公司32289 | 代理人: | 马尚伟 |
地址: | 215000 江苏省苏州市工业园区金*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于机器学习的客户价值模型优化方法,包括如下的步骤步骤1通过随机采样法提取N个客户主体不同时期的客户价值模型数据,得到初始模型数据样本Si(i=1、2、3...N);步骤2对给个初始模型数据样本Si(i=1、2、3...n)分别使用bagging机器学习方法,相对应地训练出N个独立的个体弱学习器Hi(i=1、2、3...N);步骤3通过stacking结合策略将所述的个体弱学习器Hi(i=1、2、3...N)结合成一个强学习器H;步骤4将强学习器H作为最优模型规则,并将当前客户价值模型数据样本输入到强学习器H,强学习器H得出的结果为最优结果模型。 | ||
搜索关键词: | 一种 基于 机器 学习 客户 价值 模型 优化 方法 | ||
【主权项】:
一种基于机器学习的客户价值模型优化方法,其特征在于,包括如下的步骤:步骤1:通过随机采样法提取N个客户主体不同时期的客户价值模型数据,得到初始模型数据样本Si(i=1、2、3...N);步骤2:对各个初始模型数据样本Si(i=1、2、3...n)分别使用bagging机器学习方法,相对应地训练出N个独立的个体弱学习器Hi(i=1、2、3...N);步骤3:通过stacking结合策略将步骤2中所述的个体弱学习器Hi(i=1、2、3...N)结合成一个强学习器H;步骤4:将步骤3得到的强学习器H作为最优模型规则,并将当前客户价值模型数据样本输入到强学习器H,强学习器H得出的结果为最优结果模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于欧若纳信息科技(苏州)有限公司,未经欧若纳信息科技(苏州)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710807555.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理