[发明专利]语音活动检测及其模型建立方法、装置、设备及存储介质有效
申请号: | 201710824269.5 | 申请日: | 2017-09-13 |
公开(公告)号: | CN108346428B | 公开(公告)日: | 2020-10-02 |
发明(设计)人: | 刘海波 | 申请(专利权)人: | 腾讯科技(深圳)有限公司 |
主分类号: | G10L15/05 | 分类号: | G10L15/05;G10L15/06;G10L25/78 |
代理公司: | 广州华进联合专利商标代理有限公司 44224 | 代理人: | 何平;邓云鹏 |
地址: | 518000 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请涉及一种语音活动检测及其模型建立方法、装置、设备及存储介质,该模型建立方法包括:获取训练音频文件及训练音频文件的目标结果;对训练音频文件进行分帧得到音频帧,并提取音频帧的音频特征,音频特征包括至少两种特征,至少两种特征包括能量;将音频特征作为深度神经网络模型的输入,并经过深度神经网络模型的隐藏层进行信息处理,由深度神经网络模型的输出层输出,得到训练结果;将训练结果与目标结果的偏差作为误差反向传播机制的输入,对隐藏层的权重分别进行更新,直至深度神经网络模型达到预设条件得到语音活动检测模型。因此,通过该语音活动检测模型进行语音活动检测时的准确性高。 | ||
搜索关键词: | 语音 活动 检测 及其 模型 建立 方法 装置 设备 存储 介质 | ||
【主权项】:
1.一种语音活动检测模型建立方法,包括:获取训练音频文件及所述训练音频文件的目标结果;对所述训练音频文件进行分帧得到音频帧,并提取所述音频帧的音频特征,所述音频特征包括至少两种特征,所述至少两种特征包括能量;将所述音频特征作为深度神经网络模型的输入,经过所述深度神经网络模型的隐藏层进行信息处理,由所述深度神经网络模型的输出层输出,得到训练结果;将所述训练结果与所述目标结果的偏差作为误差反向传播机制的输入,对所述隐藏层的权重分别进行更新,直至所述深度神经网络模型达到预设条件得到语音活动检测模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710824269.5/,转载请声明来源钻瓜专利网。