[发明专利]基于蜂群与梯度提升决策树算法农作物病害诊断预警方法有效
申请号: | 201710834223.1 | 申请日: | 2017-09-15 |
公开(公告)号: | CN107622236B | 公开(公告)日: | 2020-12-04 |
发明(设计)人: | 辜丽川;饶海笛;王超;焦俊;冯娟娟;赵子豪;李小伟 | 申请(专利权)人: | 安徽农业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06N3/00 |
代理公司: | 合肥鼎途知识产权代理事务所(普通合伙) 34122 | 代理人: | 叶丹 |
地址: | 230036 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于蜂群与梯度提升决策树算法农作物病害诊断预警方法,对服务器端病害库中的病害信息提取相应特征,利用GBDT算法训练并建立作物的病害关联模型;数据采集单元通过无线通信网络将叶片图像数据和墒情数据以单播方式上传至服务器;将数据采集单元上传的图像数据和墒情数据经特征提取,诊断病害的种类及预测病害发生趋势,服务器端将启动自动报警提示。本发明有益效果:本发明通过该诊断预警方法,获取农作物的图像数据和相关墒情数据,经蜂群算法优化特征集后采用GBDT算法训练生成病害关联模型,增强了病害诊断的准确性和召回率;通过无线传感网络的实时信息传输,可实时处理数据,实现病害的自动预测预警,一定程度上拓展预警时间范围。 | ||
搜索关键词: | 基于 蜂群 梯度 提升 决策树 算法 农作物 病害 诊断 预警 方法 | ||
【主权项】:
基于蜂群与梯度提升决策树算法农作物病害诊断预警方法,其特征在于:其方法步骤为:(1)对服务器端病害库中的病害信息提取相应特征,即图像特征、墒情特征、图像—墒情特征,使用引入位置偏移的蜂群算法优化特征选择,利用GBDT算法训练并建立作物的病害关联模型;(2)在农作物种植区域布置无线传感器网络数据采集单元,数据采集单元通过无线通信网络将叶片图像数据和墒情数据以单播方式上传至服务器;(3)将数据采集单元上传的图像数据和墒情数据经特征提取、优化选择后,运用病害关联模型进行相似性计算,诊断病害的种类及预测病害发生趋势;(4)若计算得出病害发生趋势和危害等级达到警戒阈值,服务器端将启动自动报警提示,同时将病害特征信息写入农作物叶片病害案例知识库中。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽农业大学,未经安徽农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710834223.1/,转载请声明来源钻瓜专利网。