[发明专利]基于一维卷积神经网络的雷达高分辨距离像目标识别方法有效
申请号: | 201710838721.3 | 申请日: | 2017-09-18 |
公开(公告)号: | CN107728143B | 公开(公告)日: | 2021-01-19 |
发明(设计)人: | 陈渤;沈梦启;万锦伟 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G01S13/89 | 分类号: | G01S13/89;G01S7/41;G01S13/04 |
代理公司: | 西安睿通知识产权代理事务所(特殊普通合伙) 61218 | 代理人: | 惠文轩 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于一维卷积神经网络的雷达高分辨距离像目标识别方法,思路为:确定Q个不同雷达,所述Q个不同雷达的检测范围内存在目标,并获取Q个不同雷达的高分辨雷达回波,然后从Q个不同雷达的高分辨雷达回波中获取Q类高分辨距离成像数据,并将Q类高分辨距离成像数据分为训练样本集和测试样本集,然后将Q类高分辨距离成像数据记为原始数据x;根据原始数据x,计算得到均值归一化处理后的数据x”';设定一维卷积神经网络模型,使用训练样本集和均值归一化处理后的数据x”'对该一维卷积神经网络模型进行构建,得到训练好的卷积神经网络;使用测试样本集对训练好的卷积神经网络进行目标识别,得到基于一维卷积神经网络的雷达高分辨距离像目标识别结果。 | ||
搜索关键词: | 基于 卷积 神经网络 雷达 分辨 距离 目标 识别 方法 | ||
【主权项】:
一种基于一维卷积神经网络的雷达高分辨距离像目标识别方法,其特征在于,包括以下步骤:步骤1,确定Q个不同雷达,所述Q个不同雷达的检测范围内存在目标,并获取Q个不同雷达的高分辨雷达回波,然后从Q个不同雷达的高分辨雷达回波中获取Q类高分辨距离成像数据,并将Q类高分辨距离成像数据分为训练样本集和测试样本集,然后将Q类高分辨距离成像数据记为原始数据x;其中,Q为大于0的正整数;步骤2,根据原始数据x,计算得到均值归一化处理后的数据x”';步骤3,设定一维卷积神经网络模型,然后使用训练样本集和均值归一化处理后的数据x”'对该一维卷积神经网络模型进行构建,得到训练好的卷积神经网络;步骤4,使用测试样本集对训练好的卷积神经网络进行目标识别,得到基于一维卷积神经网络的雷达高分辨距离像目标识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710838721.3/,转载请声明来源钻瓜专利网。