[发明专利]基于深度学习的3D图像质量的度量方法有效
申请号: | 201710842515.X | 申请日: | 2017-09-18 |
公开(公告)号: | CN107633513B | 公开(公告)日: | 2021-08-17 |
发明(设计)人: | 李素梅;常永莉;段志成;侯春萍 | 申请(专利权)人: | 天津大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/46;G06K9/62 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 刘国威 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于图像处理领域,为提出一种新的立体图像质量评价方法,实现更加准确有效的评价立体图像质量,同时在一定程度上推动立体成像技术的发展。为此,本发明采用的技术方案是,基于深度学习的3D图像质量的度量方法,首先对立体图像数据集进行切块处理,切块处理得到许多小的图像块,再对每个图像块进行归一化处理;同时对立体图像数据集进行主成分分析PCA降维处理,得到维度较低的图像;然后将切块得到的图像块数据集与PCA降维后得到的低维度数据集送入搭建的卷积神经网络中;然后利用卷积神经网络逐层提取特征;最后通过softmax分类器得到立体图像的总体质量。本发明主要应用于图像处理。 | ||
搜索关键词: | 基于 深度 学习 图像 质量 度量 方法 | ||
【主权项】:
一种基于深度学习的3D图像质量的度量方法,其特征是,首先对立体图像数据集进行切块处理,切块处理得到许多小的图像块,再对每个图像块进行归一化处理;同时对立体图像数据集进行主成分分析PCA降维处理,得到维度较低的图像;然后将切块得到的图像块数据集与PCA降维后得到的低维度数据集送入搭建的卷积神经网络中;然后利用卷积神经网络逐层提取特征;最后通过softmax分类器得到立体图像的总体质量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710842515.X/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序