[发明专利]一种基于卷积神经网络的图像深度估计方法有效

专利信息
申请号: 201710850577.5 申请日: 2017-09-20
公开(公告)号: CN107767413B 公开(公告)日: 2020-02-18
发明(设计)人: 李格;余翔宇 申请(专利权)人: 华南理工大学
主分类号: G06T7/50 分类号: G06T7/50
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 李斌
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于卷积神经网络的图像深度估计方法,包括以下步骤:搭建卷积‑反卷积对神经网络模型,所述卷积‑反卷积对神经网络模型包括多个不同的卷积层、多个卷积‑反卷积层对和激活层;选取训练集,并设置卷积‑反卷积对神经网络模型的训练参数;根据卷积‑反卷积对神经网络模型及其训练参数,以最小化损失函数为目标训练卷积‑反卷积对神经网络模型形成图像深度估计神经网络模型;将待处理的图像输入到图像深度估计神经网络模型,输出对应的深度图。利用本发明的基于卷积‑反卷积对神经网络的图像深度估计方法获得的深度图灰度值较精确,深度图层次感更强。
搜索关键词: 一种 基于 卷积 神经网络 图像 深度 估计 方法
【主权项】:
一种基于卷积神经网络的图像深度估计方法,其特征在于,所述方法包括以下步骤:S1、搭建卷积‑反卷积对神经网络模型,所述卷积‑反卷积对神经网络模型包括多个不同的卷积层、多个卷积‑反卷积层对和激活层;S2、选取训练集,并设置卷积‑反卷积对神经网络模型的训练参数;S3、根据卷积‑反卷积对神经网络模型及其训练参数,以最小化损失函数为目标训练卷积‑反卷积对神经网络模型形成图像深度估计神经网络模型;S4、将待处理的图像输入到图像深度估计神经网络模型,输出对应的深度图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710850577.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top