[发明专利]一种基于深度学习的图像超分辨率重建方法有效
申请号: | 201711020490.1 | 申请日: | 2017-10-27 |
公开(公告)号: | CN108122197B | 公开(公告)日: | 2021-05-04 |
发明(设计)人: | 章东平;倪佩青;井长兴;杨力;肖刚 | 申请(专利权)人: | 江西高创保安服务技术有限公司 |
主分类号: | G06T3/40 | 分类号: | G06T3/40;G06N3/04 |
代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 杜立 |
地址: | 330096 江西省南昌市高*** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的图像超分辨率重建方法,其目的在于利用深度学习技术对低分辨率数据进行训练得到低分辨率到高分辨率之间的映射函数,其技术关键在于(1)对数据集进行下采样处理;(2)利用残差原理,将不同层间的卷积激活结果相加;(3)训练数据分为有标签和无标签两类,两种情况对应两种损失数;(4)整合两类情况,获得最终的损失函数。本发明输入任意一张低分辨率图像到训练好的神经网络模型中,神经网络的输出即为重建后的超分辨率图像。本发明在不改变成像系统硬件设备的前提下,有效提高所获取的图像质量。 | ||
搜索关键词: | 一种 基于 深度 学习 图像 分辨率 重建 方法 | ||
【主权项】:
一种基于深度学习的图像超分辨率重建方法,包括如下步骤:步骤1:对训练数据集进行n倍下采样处理,原高分辨率训练数据IH的宽高分别是W,H,得到的低分辨率训练数据IL的宽高分别是W/n,H/n;步骤2:将原始高分辨率图像IH和由步骤1得到的低分辨率IL图像一一对应,得到有标签的训练数据,另选取低分辨训练数据集作为无标签的训练数据,且无标签的数据量大于有标签的数据量,把这两类数据存为HDF5(Hierarchical Data Format)文件;步骤3:设计网络结构,确定深度神经网络输入层节点数、输出层节点数、隐藏层数和隐藏层节点数,随机初始化各层的连接权值W和偏置b,给定学习速率η,选定激活函数RELU,选定损失函数Loss;步骤4:将输入的低分辨率训练数据IL尺寸放大n倍,所述放大是将低辨率图片插值处理,即放大后的图像像素为IS(n×i+1,n×j+1)=IL(i+1,j+1),i为图像横向位置索引,j为图像纵向位置索引;IS其余没有对应值得像素点取值为255;步骤5:对经过放大后的图像采用40层卷积神经网络进行卷积,激活处理,其中选定卷积核为3×3,激活函数为f(x)=max(x,0),利用残差原理,将第一层的卷积激活结果和第十层的卷积激活结果相加;将第十一层的卷积激活结果和第二十层的卷积激活结果相加;将第二十一层的卷积激活结果和第三十层的卷积激活结果相加;将第三十一层的卷积激活结果和第四十层的卷积激活结果相加后和第一层的卷积激活结果相加得到重建的高分辨率图像IS;步骤6:反复执行步骤5,直到神经网络输出层误差达到预设精度要求或训练次数达到最大迭代次数,结束训练,保存网络结构和参数,得到训练好的神经网络模型;步骤7:输入任意一张低分辨率图像到训练好的神经网络模型中,神经网络的输出即为重建后的超分辨率图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江西高创保安服务技术有限公司,未经江西高创保安服务技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711020490.1/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序