[发明专利]一种基于多特征融合的群体行为分析方法有效

专利信息
申请号: 201711031533.6 申请日: 2017-10-27
公开(公告)号: CN107958260B 公开(公告)日: 2021-07-16
发明(设计)人: 何小海;刘文璨;卿粼波;滕奇志;吴晓红;单倩文;王正勇 申请(专利权)人: 四川大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 610065 四川*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于多特征融合的群体行为分析方法,属于机器视觉与智能信息处理领域。该方法一方面研究了群组级别的群体行为特性,提取出一系列表征局部运动信息的特征描述符,包括群集性、稳定性、一致性和冲突性。另一方面,该方法引入了一种新的多维光流直方图特征,以表征全局运动信息,并采用多层字典学习方法进行进一步优化。最后,通过融合局部和全局运动特征描述符,构成可全面描述群体行为的特征集合,可应用于群体行为分析与行为识别等方面。通过真实视频库上进行的实验,本发明的合理性和有效性得到证明。
搜索关键词: 一种 基于 特征 融合 群体 行为 分析 方法
【主权项】:
一种基于多特征融合的群体行为分析方法,包括以下步骤:步骤一:计算群组级别运动特征。对输入的τ帧视频序列图像,首先利用群集转变方法进行群组检测与分割,进而计算群组级别的特征描述符,包括群集性、稳定性、一致性、冲突性特征描述符,以表征视频中的局部运动信息。步骤二:引入多维光流直方图特征。对输入的τ帧视频序列图像,先进行优化分块处理,做2×2分块后进行光流特征提取,并且通过对光流信息的多维编码实现特征维度的提升,得到多维光流直方图特征,以充分表征视频图像中的全局运动信息和空间情景信息。步骤三:对步骤二中得到的多维光流直方图特征,采用一种多层字典学习的方法进行处理,降低原始特征维度,同时获得更高层的视频描述特征,使多维光流直方图特征能够表征更丰富的全局运动信息。步骤四:将表征局部与全局运动信息的特征描述符进行融合后,构成群体行为的特征集合,可表示为{Φcoll,Φstab,Φunif,Φconf,ΦMHOF}。最后,选用SVM分类器进行训练识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711031533.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top