[发明专利]一种融合视觉特征和卷积神经网络的道路拥堵检测方法有效

专利信息
申请号: 201711032264.5 申请日: 2017-10-30
公开(公告)号: CN107705560B 公开(公告)日: 2020-10-02
发明(设计)人: 柯逍;施玲凤 申请(专利权)人: 福州大学
主分类号: G08G1/01 分类号: G08G1/01;G08G1/017;G06K9/00;G06K9/46;G06K9/62
代理公司: 福州元创专利商标代理有限公司 35100 代理人: 蔡学俊
地址: 350116 福建省福州市*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种融合视觉特征和卷积神经网络的道路拥堵检测方法,包括步骤:1)对输入的影像视频序列进行移动前景检测与背景建模,得到原始影像的背景和初步移动前景;2)将初步移动前景集合输入卷积神经网络,进行移动车辆识别,排除其他非移动车辆的移动前景;3)利用最终移动前景集合计算反映交通状态的图像视觉特征,图像视觉特征包括交通密度、交通速度、交通占有率和交通流量;4)计算图像光流直方图的信息熵;5)利用交通密度、交通速度、交通占有率、交通流量和光流直方图的信息熵,判断交通道路拥堵状态。本发明融合多维度的视觉特征与卷积神经网络,可以更加准确的判断道路的拥堵程度。
搜索关键词: 一种 融合 视觉 特征 卷积 神经网络 道路 拥堵 检测 方法
【主权项】:
一种融合视觉特征和卷积神经网络的道路拥堵检测方法,其特征在于,包括:步骤1:对输入的影像视频序列进行移动前景检测与背景建模,得到原始影像的背景和初步移动前景;步骤2:将初步移动前景集合输入卷积神经网络,进行移动车辆识别,排除其他非移动车辆的移动前景,得到最终移动前景集合;步骤3:利用最终移动前景集合计算反映交通状态的图像视觉特征,所述图像视觉特征包括交通密度、交通速度、交通占有率和交通流量;步骤4:计算图像光流直方图的信息熵;步骤5:利用交通密度、交通速度、交通占有率、交通流量和光流直方图的信息熵,判断交通道路拥堵状态。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711032264.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top