[发明专利]应用深度学习和改进Apriori算法综合的一次设备风险预测的方法在审
申请号: | 201711046984.7 | 申请日: | 2017-10-31 |
公开(公告)号: | CN107862406A | 公开(公告)日: | 2018-03-30 |
发明(设计)人: | 梁寿愚;方文崇;黄雄;何超林;朱文;周志烽 | 申请(专利权)人: | 中国南方电网有限责任公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/06;G06F8/20 |
代理公司: | 广州粤高专利商标代理有限公司44102 | 代理人: | 林丽明 |
地址: | 510663 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明是一种应用深度学习和改进Apriori算法综合的一次设备风险预测的方法。包括有如下步骤1)深度学习进行预测;2)改进Apriori算法;3)基于MapReduce的并行化Apriori算法的实现;4)将深度学习算法得到的结果和Apriori的结果结合。本发明所改进的算法,可以自由定义兴趣项、频数阀值,从而提高大量数据挖掘的效率,同时避免无效的输出项目。该特征可从方法输入、输出看出。本发明采用了深度学习算法对海量设备运行历史数据进行模型学习和预测。本发明利用分布式并行架构实现改进后的Apriori算法,进一步提升了计算的效率,可保证未来计算规模增大的情况下扩展计算能力,以在准实时的时间范围内给出风险预测结果。 | ||
搜索关键词: | 应用 深度 学习 改进 apriori 算法 综合 一次 设备 风险 预测 方法 | ||
【主权项】:
一种应用深度学习和改进Apriori算法综合的一次设备风险预测的方法,其特征在于包括有如下步骤:1)深度学习进行预测;2)改进算法;3)基于MapReduce的并行化Apriori算法的实现;4)将深度学习算法得到的结果和Apriori的结果结合。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国南方电网有限责任公司,未经中国南方电网有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711046984.7/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理