[发明专利]一种高分辨率遥感影像道路信息提取系统在审
申请号: | 201711066558.X | 申请日: | 2017-11-02 |
公开(公告)号: | CN107862278A | 公开(公告)日: | 2018-03-30 |
发明(设计)人: | 胡红兵;詹玉兰 | 申请(专利权)人: | 黄冈师范学院 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/36;G06K9/62 |
代理公司: | 北京国坤专利代理事务所(普通合伙)11491 | 代理人: | 赵红霞 |
地址: | 438000 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于道路影像信息提取技术领域,公开了一种高分辨率遥感影像道路信息提取系统,所述高分辨率遥感影像道路信息提取系统包括影像采集模块、数据处理模块、无线通信模块、显示模块、无线基站、远程服务器。影像采集模块通过电路线连接数据处理模块;数据处理模块通过电路线分别连接无线通信模块、显示模块。本发明通过图像高清模块对原始图像进行色度补偿例如对颜色饱和度进行补偿或者对原始图像色域范围进行扩展,因此能够提高图像色彩鲜艳度,显示设备的显示效果大大提高;通过特征提取模块模块和特征分类模块可以对图像进行提炼、分类,大大提高采集影像的处理效率。 | ||
搜索关键词: | 一种 高分辨率 遥感 影像 道路 信息 提取 系统 | ||
【主权项】:
一种高分辨率遥感影像道路信息提取系统,其特征在于,所述高分辨率遥感影像道路信息提取系统包括:影像采集模块,与数据处理模块连接,用于通过卫星获取遥感图像,并发送给数据处理模块;所述影响采集模块SAR图像变化检测方法包括:(1)对同一地域不同时间的两幅SAR原始图像分别进行去噪处理,得到去噪后图像I1和去噪后图像I2;(2)分别利用对数比算子和均值比算子,对得到的去噪后图像I1和去噪后图像I2进行运算,得到对数比值差异图Xl和均值比值差异图Xm,计算公式如下:Xl=|logI2+1I1+1|=|log(I2+1)-log(I1+1)|;Xm=1-min(μ1μ2,μ2μ1);;]]>其中,μ1,μ2分别表示I1和I2的局部均值;(3)对得到的对数比值差异图Xl和均值比值差异图Xm进行特征描述,得到对应的特征描述矩阵XL和特征描述矩阵XM;(4)对得到的特征描述矩阵XL和特征描述矩阵XM,利用各列向量的欧氏距离度量其相似度,分别构造对应的相似度矩阵,亲和矩阵W1和W2;(5)对得到的亲和矩阵W1和W2,利用基于亲和矩阵融合谱聚类方法对其进行聚类;(6)使用k‑means聚类方法将输出的特征向量f进行聚类,将得到的像素聚类结果,按照对数比值差异图Xl或均值比值差异图Xm中对应像素的排列顺序,恢复为原始图像的尺寸,得到最终的变化检测结果图,输出结果;数据处理模块,与影像采集模块、无线通信模块、显示模块连接,用于对影像采集模块采集的数据进行分析处理;所述无线通信模块基于用户的位置信息以及当前时间段内统计到的视频请求信息,对用户进行聚类处理包括用户的位置信息用当前的位置坐标来描述:li=(xi,yi);其中xi,yi分别表示用户i的横纵坐标值,对于用户i,构建一个内容请求频率向量:ni=(ni,1,ni,2,...,ni,c);其中ni,c表示用户i请求内容c的次数,每个用户对应一个内容请求向量,该向量反映了用户的内容请求偏好;基于用户的位置信息和内容请求偏好信息对用户进行聚类,具有相似内容请求偏好且位置相近的用户分到一个多播组,使用余弦相似度准则来计算两个用户间的相似度,用如下公式计算:s(i,j)=βli·lj||li||·||lj||+(1-β)ni·nj||ni||·||nj||;]]>其中β是一个0‑1之间的权重系数;使用K‑Means聚类方法,对小区内所有的用户D进行聚类,ui={li,ni}表示用户i的聚类信息,聚类的目的是将原始用户分成C类D={D1,…,DC},数学模型上是对下式求最小值:Σk=1CΣui∈Dk||ui-γk||;]]>其中γk为用户群的中心;所述基于用户的位置信息以及当前时间段内统计到的视频请求信息,对用户进行聚类处理具体步骤如下:步骤一,从D中随机取C个用户,作为C个用户群的中心;步骤二,根据相似度的计算公式,计算剩下的用户到C个用户群中心的相似度,将用户划分到相似度最高的用户群;步骤三,根据聚类结果,更新C个用户群的中心γk={lk,nk},用如下公式:lk=(Σi∈DkmixiΣi∈Dkmi,Σi∈DkmiyiΣi∈Dkmi);]]>nk=(Σi∈Dkmini,1Σi∈Dkmi,...,Σi∈Dkmini,cΣi∈Dkmi);]]>其中mi是一个0‑1之间的权重系数,重复步骤二和步骤三,直到聚类中心不再发生变化;所述根据用户聚类结果,根据每个用户群的位置信息,计算出每个用户群中心位置的水平方位角和垂直仰角具体包括:采用有源天线波束赋形模型,基站对每个用户群有一个特定波束,即对每个用户群设置一个特定的电子下倾角和垂直半功率带宽的波束,基站坐标为原点O(0,0,HBS),用户群k的质心为γk,位置坐标为(xk,yk,zk),垂直仰角和水平方位角为基于聚类后的用户群位置信息,用户群质心的水平方向角和垂直仰角通过下面的公式求出:θk=actan(HBS-zk(xk2+yk2))+π/2;]]>显然,垂直仰角和水平方位角的取值范围为θ1∈(0,π),所述基站天线波束实现对用户群的精确对准具体包括:步骤一,将调整波束的电子下倾角、电子水平角和半功率带宽,使波束的辐射方向对准用户群的中心位置,使半功率带宽范围覆盖用户群中的所有用户,基站到用户的下倾角和水平角将调整为:其中,和θk为基站基于用户聚类结果,利用用户群的中心位置计算出来的用户群中心的水平方位角和垂直仰角;步骤二,确定波束宽度,用户群的覆盖区域为一个圆点在用户群中心的圆形,则该圆形区域的半径为该用户群中离中心位置最远的用户与中心的距离,即:rk=maxi∈Dk(xi-xk)2+(yi-yk)2;]]>其中(xk,yk)为用户群k的中心γk的坐标,则第k个波束的垂直半功率带宽为:θ3dBk=arctan(xk2+yk2)+rkHBS-arctan(xk2+yk2)-rkHBS;]]>所述采用有源天线阵列的天线模型,并确定基站到用户的信道增益模型具体包括:步骤一,根据每个用户的位置信息以及所属的用户群波束,计算出每个用户位置的实际水平方位角和垂直仰角,计算出用户i相对于基站的水平方位角和垂直仰角θi',若用户i属于多播组k,则用户i的实际水平方位角和垂直仰角等于:步骤二,有源天线阵列的天线模型:3D天线增益模型采用3GPP标准中提出的有源天线阵列辐射模型,天线增益模型表示如下:其中,为下倾角为0时的有源天线单阵元的天线增益模型,和θ为用户实际位置上的方位角和垂直仰角,ρ为阵列天线的相关系数,wm,n和vm,n分别为权值因子和用户偏移相位,分别表示如下:m=1,2,...NH;n=1,2,...NV;m=1,2,...NH;n=1,2,...NV;其中,θetilt表示天线波束的下倾角,表示天线的水平转向角,针对不同的用户群,天线的θetilt和的配置不同;步骤三,基站到用户的信道增益模型,采用多播信道增益模型,在一个多播组中的用户以相同的速率接受数据,基站的传输速率超过了该群中的某个用户的最大承受速率,则这个用户将不能正常解码该数据,基站以用户群中最小的速率传输数据,因此用户群k中基站到用户的等效信道增益等于该用户群中用户的最差信道增益,即:其中表示用户i(i∈Dk)在载波n上的信道增益,由3部分组成:快衰落、基站到用户的路径损耗和用户的3D天线增益,如下表达式:其中,F和PL分别表示快衰落和路径损耗,表示第k个波束到用户i的3D天线增益;所述提出用户群分簇算法,根据用户群的位置信息,对用户群进行分簇处理具体包括:基于图论的知识对用户群进行分簇,定义波束间的干扰图G=(V,E),其中V表示波束的集合,作为干扰图的顶点,E表示波束间的干扰系数,作为干扰图的边,定义指示函数e(vk,vm)(k≠m)指示波束k和波束m间的干扰:e(vk,vm)=1,|Ok-Om|<rk+rm+rth0,|Ok-Om|≥rk+rm+rth;]]>其中Ok和Om分别表示用户群k和用户群m的半径,rth表示两个波束间干扰忽悠不计的门限距离,另外,定义e(vk,vk)=0,表示波束自身不存在干扰,根据指示函数,构建一个二值干扰矩阵:定义波束的干扰度:dG(vk)=Σm=1,m≠kCe(vk,vm);]]>当dG(vk)=0时,称vk为零度节点;分簇的具体步骤如下:步骤一,用顶点集合V构建干扰矩阵AG,初始化迭代因子h=1,孤立节点集合分簇集合节点集合步骤二,找到所有的零度节点vk,更新S=S∪vk;剩余节点集合记为Φ1=V‑S;步骤三,分簇:a)找节点k=argmax(dG(vk)),令干扰矩阵的第k行、第k列为0,更新节点集合Bh=Bh∩vk;b)循环执行a)直到AG=0;c)更新Φh=Φh‑Bh,则Φh为第h个簇;步骤四,用节点集合Bh重新构建AG≠0,更新节点集合Φh+1=Bh,更新迭代因子h=h+1,执行步骤(3);如果AG=0或者|Bh|=1,如果|Bh|=1,则Φh+1=Bh;步骤五,将孤立节点集合S分配到最少节点的一簇中;经过用户群的分簇处理后,用户群D={D1,…,Dk,…,DC}经过分簇算法被划分为Φ={Φ1,…,Φh,…},Φh表示第h个用户群簇,每个簇中的总的用户传输速率为:RnΦh=ΣDk∈ΦhRnk;]]>系统总的吞吐量为所有用户群簇的传输速率之和:U=ΣΦh∈ΦΣn∈Fαn,ΦhRnΦh;]]>其中为用户群簇Φh使用载波n的指示因子,相应的,满足的条件为:αn,Φh={0,1},Φh∈Φ,n∈F---(1)]]>ΣΦh∈Φαn,Φh=1,n∈F---(2)]]>条件(2)表示一个载波只能分配给一个用户群簇,同一簇中的用户群共享一个载波资源,不同簇中的用户群不可以复用;所述基于最大化吞吐量的载波分配算法具体步骤如下:步骤一,根据公式:RnΦh=ΣDk∈ΦhRnk,n∈F,Φh∈Φ;]]>计算每个簇中的用户在载波n上的总传输速率;步骤二,为了最大化系统的吞吐量,找到获得最大速率的载波和用户群簇,首先分配该载波给该用户群簇,根据公式:(n,Φh)=argmaxn∈F,Φh∈ΦRnΦh;]]>将载波n分配给用户群簇Φh获得最大的传输速率,载波n分配给簇Φh的频谱利用率最高,所以将载波n分配给用户群簇Φh;步骤三,将载波n从载波集合F中移除,同时,将用户群簇Φh从集合Φ中移除;步骤四,重复执行步骤二和步骤三,直到载波集合或者用户群簇集合成为空集;无线通信模块,与数据处理模块连接,与无线基站无线连接,用于将数据处理模块的处理的数据信息通过无线形式发送给无线基站,无线基站将数据信息发送给远程服务器进行存储;所述无线基站宽带无线全双工MIMO通信系统回波自干扰自适应抑制方法将迭代滤波法的迭代思想运用到回波自干扰抑制方法中,通过自适应迭代算法实现对自干扰信号的准确估计及系统误码率BER性能的提升;具体步骤如下:步骤一:近端通信节点的接收信号为:tR(n)=HFE(n)tFE(n)+HNE(n)tNE(n)+w(n);其中,为来自远端节点的有用目标接收信号;而为近端节点自身发射信号,即回波自干扰信号;分别表示近端和远端第j(j=N1,…,NT)条天线上的发送信号;与分别为远端和近端发射信号的信道转移函数;w(n)为信道加性高斯白噪声;其中,NT表示通信节点发射天线数目,NR是接收天线数目,Nf是信号每帧长度,(·)T表示对矩阵或矢量的转置运算符号;步骤二:在接收端通过利用归一化最小均方误差NLMS算法对混有自干扰、信道噪声的接收信号进行自干扰抑制,定义算法的代价函数为:Min{E[(eNE(n))2]}=Min{E[[tNE(n)-t^NE(n)]2]},]]>其中,Min表示取最小值,n表示第n时刻,E(eNE(n))2表示近端误差信号的平均功率,E[·]表示期望运算符,tNE(n)表示近端发送天线的实际发送信号,表示对近端总接收信号滤波后,获得的对近端发送信号tNE(n)的估计值;步骤三:设置采用归一化最小均方误差NLMS算法进行自干扰抑制的相关初始值:令初始迭代次数k=1,并设置最大迭代次数K及根据近端输入信号的自相关矩阵设置收敛步长因子μNE,自适应滤波器的初始化权值矢量αNE(0)以及滤波器的长度M,开始迭代过程,分别设置K=25、M=11、步骤四:根据公式按照以下公式求出近端的估计信号具体过程如下:t^jNE(n)=(αNE(n))TtjR(n)=(α1NE(n),...,αiNE(n),...,αMNE(n)T)T·tjR(n),...,tjR(n-i+1),...,tjR(n-M+1)T=α1NE(n),...,αiNE(n),...,αMNE(n)·tjR(n),...,tjR(n-i+1),...,tjR(n-M+1)T=Σi=1MαiNE(n)tjR(n-i+1),]]>其中j=N1,…,NT,NT表示发送天线总数目,M为自适应滤波器的长度,αNE(n)在表示n时刻的权值矢量,为n时刻第j条接收天线经自适应滤波后获得的近端误差信号,为第j条近端接收天线上的接收信号;j<NT,则令j=j+1,估计下一接收天线上的估计信号j=NT,则前进至步骤五;步骤五:根据下式,更新n时刻的权值矢量并根据迭代结果输出近端发送信号tNE(n)的估计信号具体过程如下:如下式更新下一时刻的权值矢量:αNE(n+1)=αNE(n)+μNE(tjR(n))T(tjR(n))+ϵejNE(n)tjNE(n),]]>其中,j=1,…,NT,NT表示发送天线总数目,ε表示的是权值矢量αNE(n)在迭代过程中的调整因数,仿真中设置的大小为0.001,为第j条近端接收天线上的接收信号,为n时刻第j条接收天线经NLMS自适应滤波后获得的近端误差信号,μNE表示收敛步长因子,(·)T表示对矩阵或矢量的转置运算符;步骤六:根据最佳权值矢量αNE(n)以及公式:t^jNE(n)=(αNE(n))TtjR(n)=Σi=1MαiNE(n)tjR(n-i+1),]]>由下式得近端估计信号的最终表达式:t^NE(n)=[t^N1NE(n),...,t^jNE(n),...,t^NTNE(n)]T,]]>其中,j=1,…,NT,NT表示发送天线总数目,αNE(n)表示n时刻权值矢量,表示n时刻的权值,其中i=1,…,M,M表示滤波器的长度,表示第j条接收天线上的接收信号;步骤七:从总体接收信号tR(n)中滤除估计出的回波自干扰信号,以获得来自远端节点的有用传输信号,将该信号送入后续的MIMO译码检测单元,以获得对远端发送信号的准确估计,具体包括:第一步,从接收信号tR(n)中减去回波自干扰估计信号得到来自远端节点的有用传输信号tES(n),即:tES(n)=HFE(n)tFE(n)=tR(n)-t^NE(n),]]>第二步,将信号tES(n)送入后续的MIMO译码检测单元,以获得对远端发送信号tFE(n)的估计;显示模块,与数据处理模块连接,用于显示高清的遥感影像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于黄冈师范学院,未经黄冈师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711066558.X/,转载请声明来源钻瓜专利网。