[发明专利]一种基于分段线性动力学方程的接触器动态特性计算方法有效

专利信息
申请号: 201711068045.2 申请日: 2017-11-03
公开(公告)号: CN107862127B 公开(公告)日: 2019-09-24
发明(设计)人: 杨文英;刘兰香;刘洋;梅发斌;翟国富 申请(专利权)人: 哈尔滨工业大学
主分类号: G06F17/50 分类号: G06F17/50
代理公司: 哈尔滨龙科专利代理有限公司 23206 代理人: 高媛
地址: 150000 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于分段线性动力学方程的接触器动态特性计算方法,属于接触器共性基础研究设计技术领域。本发明根据接触器结构特征,将接触器动作过程进行分段,利用平面碰撞和考虑能量损失的连续碰撞力模型等效碰撞过程,利用基于约束方法的多体系统运动学和动力学方法完成接触器机械系统在外力作用下的碰撞弹跳情况研究,并最终结合耦合计算方法完成考虑碰撞弹跳的接触器动态特性计算。本发明的优点是:能够获取接触器工作过程中的线圈电流、电磁力等电磁参数随时间变化的情况,能够更加准确的反应接触器电磁动态特性,误差控制在5%以内;能够更加真实的反应接触器的衔铁和动触头弹跳情况,误差控制在5%以内。
搜索关键词: 一种 基于 分段 线性 动力学 方程 接触器 动态 特性 计算方法
【主权项】:
1.一种基于分段线性动力学方程的接触器动态特性计算方法,其特征在于:所述方法具体执行步骤如下:步骤一:三维制图及虚拟产品装配:利用三维制图软件根据实际尺寸建立接触器的各个组成零件,依据几何关系、技术要求、配合约束进行装配,将各个零件接合成部件和虚拟产品;步骤二:电磁有限元模型的建立:对接触器的电磁结构部分进行简化,导入FLUX中,然后利用三维瞬态电磁特性求解方法,结合接触器产品的电磁参数:额定电压、线圈电流、线圈电阻、线圈匝数;运动参数:可动部分质量、计算反力;分网控制参数:网格的形状、大小,材料属性参数完成电磁有限元模型建立;所述步骤二的具体操作过程如下:第一步:电磁结构简化:对接触器的电磁结构进行模型简化,忽略不导磁部分、衔铁和外壳结构的圆角和倒角部分,并在电磁计算软件FLUX中重新生成线、面、体;第二步:边界条件及求解域的设定:建立电磁结构的无限盒,将求解边界条件设置为无穷大的磁各向异性零点;第三步:求解域的离散化处理:选择粗糙分网的方法将求解域离散为16000~18000个大小和形状相连的单元,并对其大小和形状进行控制,完成有限元网格的划分;第四步:机械和材料属性设置:根据接触器运动属性,对接触器可动部件和固定部件进行定义,根据电磁结构实际的材料属性完成各部件的材料属性设置,之后进行体域分配将第二步和第三步结合实际情况进行组合,最终建立电磁结构的有限元模型;第五步:线圈和动态电路的耦合:根据接触器的工作安匝数、额定电压及线圈电阻完成线圈、动态电路的建立,并将线圈电路设置为外部动态电路进行控制状态,以此完成整个接触器的电磁结构三维瞬态有限元模型建立;电磁动态特性的计算要对电磁系统的电压平衡方程和达朗贝尔运动方程进行求解;其中,接触器在吸合运动过程中用到的微分方程式如下:采用数值计算方法中的龙格‑库塔法求解上述微分方程的关系式如下:其中,式(1)和式(2)中,u为线圈额定电压;ψ为线圈磁链;i为线圈电流;R为线圈电阻;Fm、ff分别表示作用于衔铁的电磁吸力和反作用力;y1表示衔铁运动位移;使用Lz表示Mz表示Nz表示Lz、Mz、Nz的值根据动态特性方程进行计算;z=(1,2,3,4);t表示衔铁运动时间,m表示衔铁质量与动触头质量的和,j表示迭代次数;步骤三:电磁有限元模型动态链接库建立:将电磁力设置为输出,计算返力为输入,完成3D瞬态电磁特性动态链接库的生成;步骤四:基于分段线性结构动力学方程的接触器机械结构动力学模型建立;所述步骤四的具体操作过程如下:第一步:将接触器运动和碰撞接触过程等效为两段,即0<y1≤y11和y11<y1≤y22,其中,y11为触头开距,y22为衔铁行程;第二步:对两段运动、碰撞接触过程分别进行描述;(1)当0<y1≤y11时,接触器的动力学方程如下:其中,y1上面含有一个点的表示速度,含有两个点的表示加速度,M1为衔铁与连杆的总质量、M2为动触头的质量,C1为超程弹簧在运动过程中的阻尼系数、C2为返回弹簧在运动过程中的阻尼系数、k1为超程弹簧在运动过程中的刚度系数、k2为返回弹簧在运动过程中的刚度系数,y2为动触头的运动位移,Fs1为作用在衔铁上的受迫力,Fs2为作用在动触头上的受迫力,其表达式为:其中,Fm为作用于衔铁的电磁吸力;fff为返回弹簧预压缩力;fcc为超程弹簧预压缩力;fdd为动触头、开口挡圈间的接触力;fp1为动静触头间的接触力,其中有:其中:ykk为动静触头之间的开距,kj2为动静触头间的等效接触刚度;n为力的指数;δ为动静触头间的相对渗透深度;表示对δ进行求导,即渗透速度,Cj2为动静触头间的等效接触阻尼系数,取值为接触刚度的0.1%~1%;(2)当y11<y≤y22时,接触器的动力学方程如下:Fs3=Fm(x,ψ)+fcc+fff+fp2    (7)其中:yxx为衔铁行程,Fs3为作用在衔铁上的受迫力,fp2为衔铁与轭铁之间的接触力,kj1为衔铁、轭铁间的等效接触刚度,δ1为衔铁和扼铁间的相对渗透深度,表示对δ1求导,Cj1为等效接触阻尼系数,取值为接触刚度的0.1%~1%;衔铁与轭铁、动触头与静触头间发生碰撞时的接触面是方形的,设其边长为2a,平均变形为△av,横截面所受压力为p,材料的杨氏模量为E,泊松比为μ,k12为结构等效接触刚度;计算碰撞力的相应公式如下:其中,式(10)中角标1和角标2分别表示发生碰撞接触的两物体;两物体间的接触力表示为:f=4pa2    (11)联立方程(10)、(11):其中:故结构等效接触刚度为:步骤五:建立机械结构的机械动力学数值模型;所述步骤五的具体操作过程如下:第一步:将接触器的三维结构进行抽检模型,保留机械运动部分,并导入多体动力学软件ADAMS中;第二步:模型优化:建立接触器各部件间的连接关系,包括衔铁与连杆的螺纹连接、连杆与挡圈的固定连接、连杆和动触头的软连接;建立各部件间的接触约束,包括衔铁和轭铁、动触头与静触头、动触头与挡圈间的碰撞接触;通过添加各运动部分阻尼,定义触头弹簧和返回弹簧的相关参数,包括预压力和刚度系数;第三步:机械结构动力学数值模型脚本文件建立:将电磁力设置为输入,计算返力为输出,最终完成机械结构动力学数值模型耦合求解脚本文件的建立;步骤六:接触器电‑磁‑机‑运动耦合计算:将步骤二建立的电磁有限元模型和步骤五建立的机械动力学数值模型进行耦合求解;所述步骤六的具体操作过程如下:第一步:在MATLAB中完成运动耦合模块搭建,包括电磁有限元的调用模块、机械结构动力学数值模型模块、延时模块、数据读取和保存模块、求解器和计算时间设定模块;第二步:设定接触器耦合计算的初始状态,包括接触器初始线圈额定电压,衔铁位移,初始磁链,动触头位移,电磁力,计算的时间步长△t及计算总时间t,将通过龙格库塔法和基于分段约束的运动学、动力学方法求解接触器动态特性,包括线圈电流、电磁力、动触头位移随时间变化的关系。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711068045.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top